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1. INTRODUCTION

The objective of this investigation is the determination of the degree

of data compression which can be obtained for ERTS multispectral imagery using a

set of algorithms which produce zero or minimal distortion in the reconstructed

data. The results obtained can be used for determining the feasibility of data

compression as an integral part of future ERTS proqrams, either for spacecraft

or ground processing applications.

The investigation of data compression techniques for ERTS multispectral

data has been completed and the desired results have been obtained. The study

has shown that the Spectral-Spatial-Delta-Interleave (SSDI) algorithms permit an

average data compression of more than 2:1 for a strictly information preserving

reconstruction and 3:1 or better if a small degree of distortion is permissible

in the reconstructed data. In terms of storage requirements, a lO0x100 nmi scene

can be compressed to a single reel of tape for a saving of three tanes per scene.

1.1 BACKGROUND OF THIS STUDY

The multispectral imaging sensors of ERTS-A generate tens of billions of

bits daily. In future missions this figure will continue to increase as hinher

resolution sensors and additional spectral bands are added. Such volumes of data

produce severe problems in communication links, in ground data processing, and in

ground data storage and archiving. In 1970, TRW began an investigation of low

complexity data compression techniques tailored to the characteristics of multi-

spectral data in order to alleviate the magnitude of such data handlina problems.

During the in-house study, the class of techniques termed the Spectral-Spatial-

Delta-Interleave (SSDI) algorithms were developed. The SSDI technique is strictly

information preserving to provide reconstructed data identical to the digitized

source data entering the compressor. Such a technique preserves the data and

cannot be criticized by any user as invalidating his data requirements. Since

strictly information preserving techniques faithfully compress all the input data,

including sensor and quantization noises, the degree of compression obtained is

limited. A modification of the SSDI algorithm was developed to permit a higher

degree of compression at the expense of a slight controlled distortion in the
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reconstructed data. This essentially information preserving algorithm yields data

acceptable by many users of the data since the distortion is comparable to the

system noise level. Preceding the current investigation, TRW developed a set of

computer programs capable of simulating these various algorithms for use with a

variety of multispectral imaging data sources. These programs were validated using

digital imagery obtained from the Laboratory for the Applications of Remote Sensing

(LARS) C-I flight data and Apollo 9 data (S065 experiment). The programs measure

pertinent source and compressed data statistics, generate compressed and reconstruct-

ed data for the various algorithms, and reformat the reconstructed data for the

subsequent generation of photographic imagery.

1.2 STUDY TASKS

The following 6 tasks were delineated in the Data Analysis Plan as

necessary to meet the objectives of the investigation:

1. Modification of the master data compression computer programs which

were previously developed at TRW Systems to enable reformatting the

bulk MSS digital tapes, provide for selection of the desired segments

of the data to be processed and generation of the appropriately for-

matted output products.

2. Selection of 30 subscenes and 4 full scenes to be processed based on

the desired object classes and the tapes available from NASA.

3. Measurement of pertinent MSS data statistics for all scenes processed.

4. Measurement of desired global and time-varying compressed data

statistics.

5. Generation of reconstructed imagery for selected full scenes, in-

cluding a scene processed by an essentially information preserving

algorithm and a scene subjected to simulated channel errors.

6. Evaluation and interpretation of the investigation.
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In order to obtain the body of data required to accomplish these study

tasks, the set of output data products given in Table 1.1 was obtained for each

scene processed.

In addition to these proposed tasks, two additional tasks were added to

supplement the study. First, a tape of digitized spacecraft data was obtained

from NASA-GSFC and processed in the same manner as the bulk MSS tapes. This task

serves to compare the compression obtained by the algorithms for both types of

data. In addition, an investigation was performed concerning the hardware implemen-

tation of the SSDI/Rice algorithm for spacecraft applications.

Table 1.1. Data Measurements Obtained for Each Scene Processed

1. MSS Data Statistics

a. Data mean and variance per band and over all bands.

b. Cross spectral-spatial correlation.

c. Spectral correlation (joint probability distribution function).

2. Data Compression Performance

a. Probability distribution function of first difference obtained
by the SSDI, SSDIA, and SSDIAM modes.

b. Probability distribution function of the SHELL, SSDI, SSDIA, and
SSDIAM symbols.

c. Compression achieved by fixed Huffman coding of the scene using
the SHELL, SSDI, SSDIA, and SSDIAM modes.

d. Entropy of these distributions.

e. Line-by-line time-varying and overall data compression using the
fixed Huffman, adaptive Huffman, and Rice algorithms on the
selected compression mode.

f. Buffering statistics of the Rice code.

g. Huffman codes associated with the various compression modes.
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1.3 SUMMARY OF RESULTS OBTAINED

The investigation yielded a significant amount of data regarding source

statistics, compression statistics, algorithm performance, and hardware complexity

considerations. The key results are summarized below and discussed in depth in

section 4 of this report.

* Compressed bit rates, averaged over the scene, vary from a minimum of

1.22 bits/sample to a maximum of 3.747 bits/sample for the strictly

information preserving algorithms.

0 The compressed bit rates obtained, averaged over all scenes processed,

are:

2.99 bits/sample for SHELL/global Huffman

2.98 bits/sample for SSDI/global Huffman

2.92 bits/sample for SSDIA/global Huffman

2.50 bits/sample for SSDIAM/global Huffman

2.67 bits/sample for SSDI/adaptive Huffman

2.70 bits/sample for SSDI/Rice

0 For well-behaved data, the SSDIA technique gives a lower compressed bit

rate than the SSDI algorithm. For anomalous data such as that produced

by a defective sensor, this is not always true.

* The essentially information preserving SSDIAM produces a significantly

lower compressed bit rate than the strictly information preserving SSDIA

algorithm. The effects of such distortion appear minimal when properly

performed and areas of high detail are well preserved with no slope over-

load or overshoot.

SThe strictly information preserving algorithms can compress four full

lOOxlOO nmi scenes to occupy the same number of magnetic tapes currently

required to store one full scene. An even greater reduction is possible

with the essentially information preserving algorithms.
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The effect of channel errors is minimal if the channel bit error rate

is at least 10-6. Channels with higher error rates can be used if

frequent memory updates are included.

An implementation of the SSDI/Rice algorithm was developed to illustrate

the feasibility of operation at rates above 100 Megabits/second with

moderate complexity. Parallel data compressor units operating on blocks

of data permit operation at several hundred Meqabits/second.

The SSDI/Rice algorithm is well suited for spacecraft data compression

applications. The SSDI/Huffman algorithm provides an efficient data

compression and reconstruction technique suitable for use in ground

applications.
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2. TECHNICAL DISCUSSION OF WORK PERFORMED

Various data compression algorithms were exercised in this study on a
variety of multispectral data sources. The results and conclusions of these
studies are presented below in Sections 3 and 4. This section describes these
algorithms and the analytic/computational tools developed in order to provide
a framework for the discussion of the results obtained.

2.1 DESCRIPTION OF DATA COMPRESSION ALGORITHMS USED

2.1.1 Spectral-Spatial-Delta-Interleave Algorithm

The Spectral-Spatial-Delta-Interleave (SSDI) algorithm is a method of
data compression, developed for multispectral data, which removes a maximum
amount of redundancy subject to the constraints of minimizing complexity and
maximizing operating speed. This compression algorithm first operates on the
spatial redundancy in each spectral band and then uses the information obtained
to reduce spectral redundancies between adjacent bands.

In order to provide a conceptual description of the basic SSDI algorithm
and several of its modifications, a situation in which there are three spectral
bands, a, 8, y will be described. Each ground picture element (pixel) I con-
sists of three quantized spectral components, I , I , and I . Figure 2.1-1
may be helpful in visualizing the quantities involved.

The algorithm proceeds in the following fashion. First, within each
spectral band, each pixel intensity is subtracted from the intensity preceding
it in the scan direction. (This technique is essentially DPCM, treating each
spectral band separately.) To each pixel, then, there can be assigned a triple
of these differences denoted (Aa,AS,Ay).

Next, these "deltas" are themselves differenced to obtain second differ-
ences in adjacent spectral bands; viz dA = Aa - Aa and dB = Ay - AS. Here too,
each pixel may be assigned the triple (ba, dA, dB) which provides the same
information as the triple (Ac, AB, Ay). However, due to spectral band correla-

tion it should be true that on the average, IdA 1+ IdBI < ABI + IAyI, and the
dA and dB are clustered closer to the origin than the first differences AS and
Ay.
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Figure 2.1-1. Definition of First and Second Order
Differences in SSDI

These differences are transmitted in a manner allowing the original PCM

sensor data to be recovered exactly from the coded sequence. Corresponding

to each pixel, the triple (Aa, dA, dB) is developed. Given the preceding

pixel intensities, denoted (I-, Ii"1 , Ii"I) the current intensities may be

obtained by the recursion relationships
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I a = 'cx + Aa

I + A + d
6 8 A

II = I- + Aa + d + dY Y A  B

The final step in the SSDI algorithm is the encoding of these differences.

During this study three methods of encoding were investigated for use with the

basic SSDI algorithms. They are 1) global Huffman coding; 2) adaptive Huffman

coding; and 3) Rice encoding. These coding algorithms are described in

Sections 2.2 and 2.3.

2.1.2 SSDIA -A Block Averaging Extension to SSDI

Most data - including the test data used in this study - contain sensor

and sampling noise. If this noise could be reduced, a higher compression rate

could be obtained. Two modifications of the SSDI algorithm have been developed

to ameliorate the noise problem. The first modification is called SSDIA to

denote that pixel averaging is employed. SSDIA is discussed in this section.

The second modification - SSDIAM - is discussed in Section 2.1.4. The SSDIA,

like the SSDI, is a strictly information preserving algorithm while the SSDIAM

permits a degree of controlled distortion in the reconstructed data.

The SSDIA algorithm is based on the observation that sensor noise is

essentially uncorrelated from pixel to pixel. This fact degrades SSDI com-

pression since the differential magnitudes can be large when noise on one

pixel is positive while noise on the preceeding pixel has a negative value.

On the other hand, the effects of the noise can be reduced by differencing the

current pixel value in each spectral band with the average value of Q preceding

pixel values in the same band since the (uncorrelated) noise will increase the

value of some of these Q pixels while decreasing the value of others. If

these Q pixels are contiguous to the present pixel, a high degree of correla-

tion should exist with the mean of these adjacent pixels and the current pixel

intensity. An example of the SSDIA algorithm is provided in Figure 2.1-2,

based on the use of four previously transmitted pixel intensities. No future
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pixel values are used in the mean evaluation because of the difficulty that

would result in the decoding process. In general, the mean, p, of Q preced-

ing pixels would be a weighted sum of these pixels with the weightings a

function of inter-pixel correlations.

Q
j = ail(i) a= j -

i=1

Thus, SSDIA increases the compression ratio by the averaging of pixels whose

intensities are correlated with l1 but whose noise components are effectively

uncorrelated with l . Another benefit derived from the SSDIA involves a

decrease in the magnitude of the first differences when a large step in

intensity, such as is produced by an edge in the scanned image, occurs between

two adjacent pixels in the scan line. Such a situation is illustrated in

Figure 2.1-2 between pixels B and C. Note that for the SSDIA the second

differences, dA and dB, are obtained in the same manner as for the SSDI

algorithm.

PIXEL INTENSITIES

SCAN LINE j : 176 175 173 171 160 156

SCAN LINE j+1: 179 L17'8 175 17 j 161 155

A B C

PIXEL A PIXEL B PIXEL C

Block Mean 174 170 164
(to 8 bits)

A,SSDI -3 -5 -9

Aa,SSDIA +1 0 -3

Pixel intensities are given for two scan lines in spectral band a. The

averaginq will be performed over a set of four oreviously computed ad-

jacent pixels and an equal weightinq of 1/4 is qiven each intensity. The

selected set for pixels A and C are enclosed in boxes. The compression

improvement for these pixels by averaqinq is given above.

Figure 2.1-2. Illustration of the SSDIA
Averaging Technique
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2.1.3 Shell Coding

Another form of coding the triples has been investigated. This method
is referred to as shell coding for reasons which will become clear. Instead

of coding each differential component independently, the triple of differences
is encoded jointly. That is, the triple of differences is mapped into a

scalar quantity.

As illustrated in Figure 2.1-3, each pixel corresponds to a point in a
three-dimensional vector space with coordinates equal to the intensities of
each of the three spectral bands. The vector space is assumed to be quantized
into cells. If each intensity is quantized into seven bits, there are 21 cells
in this "spectral" vector space. Therefore, each pixel could be completely

described by numbering each cell and assigning to each pixel the number of the
cell which contains the vector tip. This is essentially what is done in

ordinary PCM where the quantized cell coordinates are projected onto the
intensity axis and transmitted in sequence. Differential PCM accomplished

this by placing a "floating" cube centered on the cell containing the last
pixel intensities, as shown in Figure 2.1-4. The new set of pixel intensities

is then mapped onto the coordinates of the "floating" cube as differential
information.

I *11

/ P

-2

/ -3-2 -1 0 1 2 3AA
l/ / I

Figure 2.1-4. Floating Cube Desianatic
of Pl and P2. Dotted Li

Figure 2.1-3. Cells Correspond to Two Designates Shell 2 (L=2,
Picture Elements, PIP2 in Two Dimensions
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A more sophisticated method of transmitting this same information is the

transmission of only a single (digital) number assigned to the particular cell

of the cube within which the differential intensity vector lies. However, if the

total number of cells (in any direction away from the center cell) need to
handle the differential vector is q in mangitude the total number of cells

which must be labeled is 26q. For M spectral bands, the number of cells Q
lying on a shell a distance L away from the origin (0,0,...,0) is

Q = (2L + l)M - (2L - 1)M, for L > l

Shell coding transmits the actual cell label by conveying two pieces of
information; the shell of the cube on which the differential vector lies and
the label of the cell in that shell which contains the vector. This technique

has the potential for achieving good data compression since three quantities

are mapped into one.

The average length of the shell code depends on the probability density
of the number of triples lying within each shell. If most levels are con-
centrated within the first few shells and the maximum number of shells required

is quite large, then significant data compression is possible. (The shell
probability distribution appears similar to an X2 distribution.) The average
length of the shell code depends upon the shell probabilities. Since very
few triples (0,0,0) occur, almost all sequences have at least five bits per
triple. In addition, the number of the shell must also be transmitted, thereby
increasing the code length. The shell levels are Huffman coded according to

the shell distribution.

Neglecting the additional information required to specify the shell
number (L), the following is a comparison of the number of bits required to
compress a triple of differential information with shell encoding versus that
required for the SSDI code. The first column gives the largest (in absolute

amplitude) component of the triple, the second column gives the number of bits
required to specify the cell in that shell containing the triple, and the last
column gives the total length of the SSDI code required to transmit the triple.
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Note that the third column contains a range for the total number of bits

required. This is because the total SSDI code length is variable depending

on what the other two levels in the triple are for a given maximum level. As

an example (3, -3, 3) requires 18 bits total while (0, 3, 0) requires only

8 bits in the SSDI even though they both lie on the third shell.

Max. Level No. Bits No. Bits
Per Triple For Shell For SSDI

-4 9

-3 8 8-18

-2 7 7-15

-1 5 5- 9

0 1 3

1 5 4- 6

2 7 6-12

3 8 8-18

4 9

Again, as illustrated by the results given in this tabulation, the average

length of the shell code depends upon the shell probabilities. Since very few

triples (0, 0, 0) occur, almost all sequences have at least five bits per

triple. In addition, the shell number L, must also be transmitted which

increases the code length.

The SSDI and Shell algorithms are two methods of source coding the

triples (Aa, dA , dB) and each is inherently strictly information preserving

but can be easily extended to be essentially information preserving. The

SSDI source encodes the data using a Huffman code based on the statistical

occurrence of the differentials considered singly while the shell code uses

the shell statistics to jointly encode the triple of the differentials.

2.1.4 SSDIM and SSDIAM - Essentially Information Preserving Algorithms

The SSDIM and SSDIAM algorithms allow the mapping of data intensities

within specified limits in a fashion which increases the compression obtained

while holding the distortion in the reconstructed data to controlled levels.
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These essentially information preserving (eip) algorithms utilize a simple

pre-processing of the data to decrease the average magnitude of the SSDI or

SSDIA symbols and tends to average out sensor and quantization noise effects

in the data.

The mapping is performed on the original data sample intensities so that

the resulting reconstructed data cannot deviate from the original data by more

than m quantization levels, where m is a level specified by the user. Values

of m = 1 or 2 are useful for eliminating much of the deleterious effects of

sensor and quantization noise on the compression algorithms without producing

noticeable visual degradation to the reconstructed image while higher values

produce visual changes with severity depending on value m and scene content.

Section 3 will discuss this situation in more detail. In all cases, no inten-

sity element in the reconstructed data has an error of more than m quantization

levels and the mean square error is always less than m2/22q of the maximum

dynamic range, where q is the number of bits per data sample.

The SSDIM mapping is performed over a block of k pixels at a time in the

following fashion. First, the integer-block average of all pixels is formed

within each spectral band. Second, the individual block intensities are shifted

in level toward that mean value, with a maximum shift of m levels up or down.

If the intensity lies at the block mean, its value is unchanged. Following

this operation the conventional SSDI operation is formed on the mapped inten-

sities. Note that this averaging and mapping operation always decreases the

sum of magnitudes ST of the SSDI symbols, implying a decrease in variance of

the symbol probability distribution function and a corresponding increase in

compression.

An example of SSDIM operation serves to illustrate the averaging and

mapping process. Assume that the original intensity values in the (3) spectral

bands are

10 17 15 la = 14

S12 10 12 1 = 11

Y 5 10 14 = 10
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With a mapping of m = 1, the following intensities are established

S11 16 14

8 11 11 11

Y 6 10 13

With a mapping of m = 4, the following intensities result

a 13 13 13

8 11 11 11

y 9 10 10

Based on these three sets of intensities we get the following sequence

of symbols and corresponding values of S

SSDI = 7, -9, 7, -2, 4, 2 + S = 31
T

SSDIM m=I = 5, -5, 4, -2, 2, 3 +S = 21
m= =T

SSDIMI m=4 = 0,, , 1, 0, 0, 0 +S = 1

The SSDIAM is formed in a similar fashion but the mapping average is

performed over the block of pixels in both the current scan line and those in

the preceding scan line. Following the mapping, the conventional SSDIA opera-

tion is performed on these mapped intensities. While the actual reconstructed
data may differ depending upon whether the SSDI or SSDIAM operation is used,

the distortion bound remains the same. The SSDIAM normally produces a some-

what higher compression than the SSDIM.

The averaging can be performed over fixed blocks or the block size can

vary adaptively with changing scene characteristics. Fixed block sizes per-
mit an algorithm of lower complexity but generally provides less compression

than adaptive versions. As the block size increases to a degree where the

block mean differs substantially from the means of subblocks, performance
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deteriorates. An adaptive block begins at some minimal block size L and

increases the size, one element at a time, until the mean begins to differ too

widely from the block mean L" For each additional intensity added, the new

block mean can be calculated recursively from the last as

L IL+1
L+1 041 L L+1 "

If iL+K/IL falls outside prescribed bounds, the block size is trun-

cated to include L + K - 1 pixels. The block size increases in regions of

low data activity and decreases in regions of high data activity. In any

case, whether SSDIM or SSDIAM, these mapping techniques avoid problems of

overshoot and slope overload. Use of the SSDIM or SSDIAM does not entail any

modification in the reconstruction algorithms.

2.2 HUFFMAN SOURCE CODING

Several algorithms exist for efficiently coding sources whose statistics

are known. These techniques have been investigated at TRW and the Huffman code

was chosen as being the most desirable algorithm for ground processing. The

Huffman code has all the properties required to ensure unique decoding with

the minimum number of bits, coding each symbol at a time. Furthermore, it

permits use of a "table look-up" decoding algorithm which can be performed

rapidly.

A difficulty encountered in practical applications is the cumbersome

algorithm required for the classical synthesis of a Huffman code given the

statistics of the source symbols S. TRW has developed a more efficient tech-

nique for generation of Huffman codes. The latter algorithm also permits

grouping of low probability symbols together for simplified decoding. Follow-

ing a discussion of the classical Huffman code synthesis, the new algorithm

will be described.

2.2.1 The Classical Synthesis of Huffman Codes[1]

To explain the classical Huffman code synthesis, consider a source S

wihsmbl 1 1 1 1 21with symbols sq, s, ... , s and symbol probabilities P1  P1  .. Pq. With-1 2q 1 ., q

out loss of generality, it may be assumed that the symbols are ordered so that
1 11P1  . >p' . The two least probable symbols S' and S may be com-q q-

bined and thought of as a single symbol with probability equal to Pq-1 + q'
Thus, a new source S may be constructed with symbols s2, s, ...

2 221 29 .. 92q- and probabilities P 2 , 2 P q- 1, again ordered so that P 2 ...
q1 1 2 q-10
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>p2_. The reduction can then be repeated to obtain a sequence of sourcesq-1V
SI, S2, ..., Sq-1 where Sq-1 has only two symbols.

A compact instantaneous binary code for the final reduction Sq-1 is the
trivial code with words 0 and 1. Working backward from this final reduction,
the Huffman code is inductively synthesized as follows:

Assume that a compact instantaneous code has been found for the source
1 iS One of the symbols, say s., is formed from the two least probable symbols

of S -1  These two symbols are S i and S 1  . Each of the other symbolsq- i-i+i" -i1lof S correspond to one of the remaining symbols of S . The code for Si-1

is formed from the code for Si thus:

i-1 i-1To each symbol of Si- 1 , except si- q and si-q+1 , assign the codeword used
by the corresponding symbol in S . The codewords assigned to Si- 1 and Si- 1

i -q i-q+1
are formed by adding a 0 and 1, respectively, to the codeword used for
i

SO. An example of the synthesis procedure for a given source is illustrated
in Figure 2.2-1.

Reductions R
Symbols Probability Rl  R2  R3  R4  R

S1  .4 .4 .4 .4 .4 .C

S2  .3 .3 .3 .3 .3 .4

S .1 .1 .1 ..1 .
S4  . . .

s5 .06 06 1 (a) Source Reductions

S6  .04 .04

R1 R2 R3  R4  R5

C1  0 0 0 0 1

0
C2  10 10 10 11

C3  110 110 111 10

C4  1110 I 1110

C5  lll 1110 (b) Code Synthesis

C6  11110

Figure 2.2-1. Classical Huffman Code Synthesis
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Each symbol si of the source S1 is thus assigned a codeword of length li
The average code length for this source is therefore

q

= Pi Z.

i=1

where E satisfies the inequality

Q
0 L H = -. P log P

i=1

where H is the entropy of the source S1.

The difficulty imposed by the classical Huffman synthesis arises in the

forward flow of the code generation between successive reduced sources. This
procedure is very inefficient with respect to both storage and time when used

as the basis of a computer algorithm for coding a source.

2.2.2 An Improved Huffman Algorithm for Computers

The new algorithm separates the source reductions from the code synthesis.

The first part of the algorithm keeps track of the number of times each sym-

bol in the original source is grouped during the sequence of source reductions.

This contains all information about the length of the codeword assigned to

that symbol in the r sulting Huffman code. The second part of the algorithm

uses these lengths, .i, to generate a Huffman code C for the source S.

Note that the resulting Huffman code may or may not be identical to the

code generated by the classical synthesis procedure. Nonetheless, the average

code length is identical. Using the classical technique, many different Huffman

codes can also be generated, depending on the assignment of 0 and 1 in each

reduced source.

The method begins with the same source reductions as in the classical

Huffman code synthesis described above with the addition of a final reduction

to source Sq containing only one word. The code lengths may be determined as

follows:
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i i i+1 i+1If the symbols s. and s- are combined to form si+ the symbol si+ mayi j-1 t O
be considered a reduction of each of the symbols s. and s Assign to each1 j-l"

symbol s. the length li, initialized to zero. Each time a symbol, or any of

its subsequent reductions, is reduced the value of 1i is incremented by one.

It is perhaps easier to understand this algorithm by referring to the example

in Figure 2.2-2.

R R2 3 R4 R5  R6

S .4 .4 .4 .4 .6 .

S2  .3 .3 .3 .3 .4

S3  .1 .1 .2y .3

S4  .I .1 .

S .06 .

S6  .04

1 0 0 0 0 0 1

£2 0 0 0 0 1 2

£3 0 0 0 1 2 3

4 0 0 1 2 3 4

£5 0 1 2 3 4 5

6 0 1 2 3 4 5

Figure 2.2-2. Determination of Code Word Lengths, Z

The second part of the algorithm is illustrated in Figure 2.2-3. This

part of the algorithm operates as follows:

1. The lengths of .i are ranked in the order of increasing length.
1

2. Symbol Sk of minimum length, zk' is assigned Xk zeros.

3. Each successive symbol Sm has a code formed as

Cm = (Cm-1+1) + (m-i1m-l) zeros.
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SYMBOL LENGTH, . OPERATION CODEWORD1

S1  1 0 0

S2  2 0 + 1 and 1 shift 10

S3 3 10 + 1 and 1 shift 110

S4  4 110 + 1 and 1 shift 1110

S5  5 1110 + 1 and 1 shift 11110

S6  5 11110 + 1 and no shift 11111

Figure 2.2-3. Huffman Code Synthesis Using
Code Word Lengths 2 i

This algorithm is very fast and essentially separates the problem of code

generation from that of source reduction. The only information which need be

stored from the source reduction portion of the algorithm is the vector of

code lengths.

2.2.3 Low Probability Symbol Grouping

Often the total number of symbols i in source S is quite large and many

of these symbols have probabilities of a small fraction of one percent. To

save time in the encoding/decoding process at the expense of a small increase
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in average code length, these low probability symbols can be lumped into a
single symbol. As an example, after ordering symbols with decreasing proba-
bility of occurrence, the first J symbols are directly coded, where

P > .99
i=1

The remaining symbols, having a total probability PJ+ 1 of one percent or less,
are grouped into symbol Sj+1 . If M symbols are lumped into SJ+ 1, R bits must
be used to describe these M symbols, where R = {log2 M}.* During transmission,
codeword CJ+ 1 is followed by R bits to describe which of the M symbols occurred.
The average code length is lengthened by such a grouping by less than P.R.

The advantage of grouping symbols which seldom occur is that the maximum
length of any code word can be held to some predetermined length N. This sim-
plifies the decoding algorithm and keeps the length of the required look-up
table to length 2N. These advantages in decoding are obtained at the possible
expense of a slightly increased average code length.

{ } means next larger integer.
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During the encoding process, whenever one of the grouped symbols occurs

the compressor transmits the sequence of bits forming code word Cj+ l followed by
R bits to describe which grouped symbol occurred. When the decoder encounters

code word C J+ , it uses the next R bits to decode this grouped symbol.

2.2.4 Computer Program

A computer program has been developed and tested which accepts an array

of symbols and generates the Huffman code. The program allows the operator

to group symbols if desired and generates the grouped Huffman code and the
average bit rate if R bits are used to separate the lumped symbols.

The flowchart describing the program is given in Figure 2.2-4. The inputs
required are the source symbols Si , their associated probabilities Pi, and the
maximum codeword length acceptable N. The program outputs the Huffman coded
Table HUF, which contains the coded bit stream C associated with the source S.

Two major subroutines are used in this program. Subroutine ORDER re-
orders' the symbols and their probabilities in.a decreasing order so that the
most probable symbols are at the top of an array 0. Subroutine GROUP adds the
two least probable symbols in the array 0 to form a source reduction. This
subroutine also keeps count of the number of source reductions performed and
keeps track of the original source symbols which have been combined to form
each reduced symbol. Each symbol is given a bit position in an array V. If
symbols sl, s3 and s5 have been combined in a source reduction, that reduced
symbol is represented in V as the binary word ( . . . 1 0 1 0 1). This re-
presentation allows a compact designation of groupings at each stage in the
reduction.

In operation, the program takes the array of input symbols and their
probabilities, calls ORDER to rank them, and combines the M least probable
symbols to form the grouped symbol sJM+1 of probability PJ-M+1 = Pi

i=M

(assuming P1 >- P2 > "'" PJ-I > PJ). This new set of J-M+1 symbols forms the

input to the basic algorithm in which successive calls to subroutines GROUP
and ORDER generate successive source reductions until only two reduced symbols
remain. At each stage of the reduction, array LENGTH is updated by one for
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INPUTS:

5, P, N

8

INITIALIZE:

0(1,j) = P(j)

O(2,j) = 2
j - 1

LENGTH (j) = 0

CALL

ORDER (0)

GROUP K LEAST
PROBABLE SYM-
BOLS INTO Sk+I

ORDER (0)P 

CALL

CALL

GROUP (o)

T-
NO nk+1

0,)=1.

A

Y,-S

USE LENGTH (j)
TO GENERATE CODE

WORDS TABLE HUF

IS ANY CODE WORD
LENGTH > N k=k+l

NO

OUTPUTS:

HUF

Figure 2.2-4. Program for Huffman Coding
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each symbol in S which has been combined to form one of the reduced symbols

which have been grouped in that step.

Following the reduction process, the array LENGTH is used to compute the

binary codeword associated with all of the J-M+1 non-grouped source symbols.

LENGTH is re-ordered so that the most probable symbols which have the shortest

code lengths are at the top of the array. A test takes place after LENGTH is

re-ordered. If the longest codeword exceeds N bits, more source symbols are

grouped and the source reductions performed again until the maximum codeword

length is N or less. With 256 source symbols, such an occurrence is guaranteed

at some stage of grouping.

The generation of the codes then begins with the minimum length codeword

and proceeds from word to word with the successive steps of adding 1 to the

previous codeword and adding the required number of zeros to fill the word.

Table HUF is then generated where all entries corresponding to non-grouped

symbols contain the computed Huffman codeword. For all grouped symbols, the

entry in HUF contains the lumped prefix codeword CJM+1 followed by 8 bits

giving the symbol directly.

2.2.5 Adaptive Huffman Coding

The adaptive Huffman algorithm used in the TRW simulation program

produces a new Huffman code for each scan line of data based on the sta-

tistics of the difference symbols generated for the preceding scan line.

Two concurrent operations are therefore performed for the processing of a

given scan line, the symbols for this line are encoded using the Huffman

code developed based on the statistics of the previous line,and the proba-

bility distribution of symbols generated for the current line is computed.

At the end of the scan line the Huffman coding subroutine is called and the

new code is computed and stored. The same technique is used for reconstruc-

tion since the decoding processor has regenerated the previous line of

symbols and can develop the same Huffman code.

This technique is very rapid and does not require significant storage

for performing the required operations. The efficiency of the code generated

depends upon the correlation of symbol statistics from one scan line to the
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next. Generally, the match of statistics is quite good and certainly

superior to a technique using the symbol statistics from one block of data

on a scan line to develop a code for use in the succeeding block of data on

that line.

This form of adaptive coding yields excellent results in subscene

processing since the scan lines are relatively short and the subscene

normally contains a single object class with rather uniform symbol statistics.

A more efficient coding for large scenes might require breaking each scan line

into several segments and computing a separate Huffman code on each segment

for use in encoding symbols on the corresponding segment of the following

scan line.

2.3 THE RICE CODING ALGORITHM

The Rice encoding algorithm, developed by R. F. Rice at JPL [2] is a variable

length coding system which is basically strictly information preserving. Operat-

ing on a sequence of source symbols, the Rice machine adapts by selecting one of
three coding schemes with computational capability for optinally switching to that

one of three codes which is compatible with the data activity. Code FS performs

well with low data activity, code FS performs well for data of medium activity,

and code CFS performs best with very active data. In order to adapt to rapid
changes in activity, the basic Rice compressor monitors data activity and selects

the appropriate code mode based on small blocks of data symbols.

The resulting coding system produces output rates within .3 bits/sample

of the one-dimensional entropy of the samples and cannot expand the data by
more than .1 bits/sample under any circumstance. While the Rice machine can

operate on any source of data, the input to the Rice encoder, as described here,
is the sequence of SSDI, SSDIA, or SSDIAM symbols.

Rice assumes that the adjacent samples of A are statistically independent

and that the probability distributions of these symbols decrease monotonically

on either side of A = 0. For his assumed zero-memory source, Rice seeks to

assign the shortest code words to source symbols which have the greatest pro-

bability of occurrence and the longest code words to those symbols which have

the least probability of occurrence. This is the same idea underlying the Huffman

code as described in Section 2.2.
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For each block of J symbols, the entropy of first order linear differences

is given by
q

H(P) = pi log pi bits/pixel

i=1

where p.i represents the probability of the i--h source symbol and the log

function is base 2. Parameter q can vary from zero to 2N+-1, where N is the

number of bits used for source quantization. Entropy can be considered as the

quantitative measure of the source data activity.

L(P) is the number of bits/pixel required to code the sequence of diff-
2N+ 1 - 1

erence samples have the distribution P = {pi} . Under Rice's assumption
i=1

of a zero memory source, the average code length cannot be less than H(P):

E[L(P)] > H(P)

where E denotes the expectation operator.

The generality of Rice's model assumes that P can change completely from

block to block and his coding algorithm can change from block to block, depending

on the distribution, P, within each block. He measures the system performance

by comparing E[L(P)] with the lower bound H(P). In operation, the Rice algorithm

monitors the data activity of each block of symbols and select one of three codes,

dependent on the activity range.

2.3.1 The Fundamental Sequence and Code Assignments

Let Z represent the jth difference sample in a block of J transformed

symbols. This input sequence appears as a sequence of symbols S. where each

input sample Zj is associated with some symbol Si by the following assignments.

O - S1
+11

+I < S3

1 S 2 2- 3
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+2 - S4

+127 +S 2 5 4

-127 *S 2 5 5

[255

Following Rice[2 ] , a q x J sample matrix can be constructed with elements

aij given by

i = 1, 2, ... , q
1 iff Z. =S :iff Z i = j = 1, 2, ... ,j

Sij
0 otherwise

This is illustrated in Figure 2.3-1 for q = 4, J = 8 and an assumed input
sequence S1S1S2S2S1S3S4S1. The fundamental sequence FS is generating by a

"wiggle" operation involving three steps:

1. Cross out all zeros which lie below a 1 in the sample matrix.

2. Cross out any remaining l's in the last row.

3. Letting ri denote the residual O's and l's remaining in the ith row,
concatenate the {r i } to form the FS. This operation is illustrated

in Figure 2.3-2 for the example given in Figure 2.3-1 to produce the
fundamental sequence.

FS = r1r2r3 = 1 1 0 0 1 0 0 1 1 1 0 0 1 0.
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SAMPLE z1 z2  z3  z4  z5  z6  z7  z8
ASSUMED
INPUT s s s2  s2  s1 s3  s4  sl
SEQUENCE 1 1 2 2 1 3 4 1

S 1 0 0 1 0 0 1

I I
s2 0 0 1 1 0 0 0 0

s3 0 0 0 0 0 1 0 0

s4  0 0 0 0 0 0 1 0

Figure 2.3-1. Sample Matrix

SAMPLE z1 2 z3 z4 z5 z6 z7  z8

INPUT s s s s s s s
SEQUENCE 1 Sl 2 s2 S1  s 3  4 1

S1  1 1 0 0 1 0 0 1

s2 0 0 1 1 B 0 0

s3 a P P I 1 0 I

s4 B ] 0 0 0 I IB

Figure 2.3-2. Fundamental Sequence Generation
FS = 11001001110010
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While not necessarily the best code for the FS, the code table used by

Rice is given in Table 2.3-1. Code word designation z1 corresponds to the

ith word of a variable length binary code. As shown in the table, an 8-word

variable length code is used. Coding the FS (or its complement) means assigning

one of the code words in Table 2.3-1 to each sub-sequence of three binary digits

making up the FS. Each sub-sequence of three bits is an address to an 8-word

table containing the code. Rice's code word assignment is given in Table 2.3-2.

Table 2.3-1. Variable Length Code

Code
Word Actual Code Word

Designation

£1 0

£2 100

£3 1 0 1

4 1 1 0

£5 1 1 100

£6 1 1 101

£7 1 1 1 1 0

P8 1 1 11 1

Table 2.3-2. Code Word Assignment

Address Code Word
Assignment

0 0 0 I

0 0 1 Z
01 0 k3

1 1 0 £6
0 1 1 7

1 1 1 £8
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As an example, use the FS previously determined. A dummy zero is added

at the end of the FS so that the FS is divisible by 3. CFS and CF are given

here

FS: (110) (010) (011) (100) (100)

CFS: (11101) (101) (11100) (110) (110)

P-S: (001) (101) (100) (011) (010)

CFr: (100) (11110) (101) (11100) (101)

In this example, FS is of length 15 bits, CFS is of length 19 bits, and CFS is

of length 19 bits.

Letting F be the length of the block FS normalized to bits/sample, the

decision as to mode used is given by

CFS if 1 < F < 1.5

FS if 1.5 < F < 3

CFS if F > 3

Figure 2.3-3 illustrates the basis of these range selections and shows how

close each coding modeuu lies to the entroupy curve. For tlhe example sequence

of eight symbols, F = 15/8 implying that FS should be transmitted.

2.3.2 Split-Pixel Modes

An additional set of operating modes can be added to the basic compressor

to extend efficient performance to data sources with entropy outside the principal

operating range: i.e., very active data.

The basic compressor operates independently of the level of quantization and

can be made to treat m-bit data as n-bit data (m > n) simply by shifting out the

m-n least significant bits of each data sample. The split-pixel option allows

the basic compressor to compress only the n most significant bits of each m-bit

sample and to transmit back directly the most significant of the remaining k=m-n

bits. Each such split-pixel mode is designated by the notation (n,k). Note that

if n+k < m, distortion can occur when the data is reconstructed. Thus, the Rice

algorithm can be extended to become essentially information preserving throuqh

such an operation of the split-pixel modes.

2-24



I i I I I

I I

5 / I
6- _

CODE FS/ CODEIFS

/ s O I
/ I I

-/ / 1O

/ O 8
-

PRICIPAL OPERATING RANGE I
o I I I I0 _ 2 3 4

H(P), BITS, PIXEL

Figure 2.3-3. Dynamic Performance Curves
for < H < 4

Split-pixel performance versus source entropy is given in Figure 2.3-4.

As shown, one of the (n,k) modes lies close to the entropy line for 4 < H < 8.

By computing the entropy of the block before encoding it, the decision as to which,

if any, split-pixel mode to use can be made. Alternatively, since adjacent scan

lines are normally highly correlated it is very likely that the particular (n,k)

mode best for one line would also be best for the next. This technique, used in

the TRW simulation, computes the entropy of each scan line to determine the best

(n,k) mode and uses that mode for encoding the next line. In general, this tech-

nique comes close to optimality and is definitely easier to implement than the

first technique mentioned.
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(3,5)

(5,3)

8 --. 8.1

(B, 0)

(71
7 -

(4,4)
L-- (6,2)

-~
+ 6 (3,5)/ C

-C

(4,4)

51
(6,2)' -- (5,3) i

0' / - (7,j)

4-. (8,0)
1 I I IJ

4 5 6 7 8

H, bits/pixel

Figure 2.3-4. Split-Pixel Performance

As shown in Figure 2.3-4, not much compression is lost if the modes used

is slightly wrong. As an example, if the block entropy is 6 bits/sample and

the (6,2) mode is used instead of the optimal (5,3) mode, the data rate only

increases by .15 bits/sample. Thus, not all possible modes need be provided

in the compressor, simplifying both encoding and decoding operations. In the

TRW simulation only three split-pixel modes are used. The entropy H of a segment

of data is computed and the mode selected is determined as follows:

ENTROPY MODE (n,k)

H <4 (7,0)

4 < H < 5 (6,1)

5 < H < 6 (4,3)

H > 6 (3,4)
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The (7,0) mode is not a split-pixel mode but the range of the basic compressor.

Since the n most significant bits can be transmitted as FS, CFS, or CFS, there

are a total of twelve possible Rice modes allowed in the simulation.

2.3.3 Data Formatting

Since each block of data can be transmitted as FS, CFS, or CF-S two block

identification bits (BID) must be inserted before each block of compressed data.

These two bits enable the decoder to know the mode used. Since each line will be

encoded in one of four split-pixel modes, two line identification bits (LID) are

inserted at the beginning of each new scan line. Following the two LID bits are

the four intensity values which comprise the spectral components of the first

element in the scan line. For split-pixel operation, following the two BID bits

are the variable length Rice encoded n most significant data bits of the block.

Following the Rice sequence are the k least significant bits of the block. The

data format for the beginning of a scan line and the first (n,k) block is given

below for a block of length L.

Several comments on the operation of program CRICE lend further

insight into the techniques employed. First, the fundamental sequence

(FS) is generated by the following steps which simulate the Rice wiggle

operation:

(a) Have vector of 64 symbols stored in IRS.

(b) Set parameter IS to zero initially. On successive passes, IS=I,

-1, 2, -2, etc.

(c) Generate the successive bits of fundamental sequence in IFS with

a one bit for each entry of IRS where symbol level equals IS and

a zero bit for each entry with a different symbol level.

(d) Keep track of location of symbols in IRS which produced a one bit

in IFS. After each pass through IRS, reorder IRS by eliminating

these symbol levels.

(e) Continue steps c and d, continually incrementing parameter IS

until no symbols remain in IRS. At this point the fundamental

sequence for the block is contained in vector IFS. If mode CFS

is to be used, each entry in IFS is complemented.
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Overhead bits are transmitted at the beginning of each new scan line

with the following format:

Initial Intensity Values

Scan Line Mode Mode of

Identification SSDI/SSDIA Band 1 Band 2 Band 3 Band 4 Split-Pixel

2 bits 1 bit 7 bits 7 bits 7 bits 7 bits 2 bits

New Scan Line Format

Depending on whether or not a split-pixel mode is being used for a

block, two formats exist for the compressed data in a block.

Rice Mode Compressed Block Bits

2 bits ? bits

Non Split-Pixel Block Format

Rice Mode Compressed (n) block bits (k) Residual Bits

2 bits ? bits 64 k bits

Split-pixel (n,k) Block Format

The initial two bits contained at the beginning of each block or line

format is specified as follows:

00 + FS

01 CFS

10 CFS
11 new scan line
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2.3.4 The DCSTAT2 Simulation of the Rice Algorithm

The Rice simulation in DCSTAT2 given in section 2.5.2 computes the number

of bits required for a Rice encoding of the transformed data. In order, to

minimize the time required for the simulation, several shortcuts are used which

introduce no error in the computation but are faster than the classical synthesis

of the Rice code.

The entropy H of the input symbols is computed for each scan line and used to

determine the split-pixel mode to use for the next scan line. The block size used

is sixteen ground elements which implies 64 samples per block from all four spectra

bands. For each block the FS is computed not by the Rice "wiggle" operation pre-

viously described but by recognition of the fact that the length of the FS (LFS)

can be obtained by the algorithm:

64 0 if Si > 0
LFS= [2 x 1Si  i i =  1 if Si < 0i=1I

Thus, for symbols 0, -2, 2, -1, 5 we obtain LFS = 1+5+4+3+10=23. The normalized

length of FS is given by LFSN = LFS/64 and LFSN is used to compute the Rice mode

to use for the most significant n bits of the data samples in that block. If

LFSN < 1.5 use CFS, if 1.5 < LFSN < 3.0 use FS, and if LFSN > 3.0 use CFS.

If either CFS or CFS is used, the table given in Table 2.3-1 is used to

determine the length of the coded sequence assigned to each block. Two more bits

(BID) are added to each block total and a running total (NBRICE) of all bits

required for encoding the samples in the scan line is maintained. At the end of

each scan line this total is added to the thirty bits/scan line required for

transmitting the LID and the first element values. Dividing this total by the

number of samples in the scan line gives the average number of bits/sample requirec

to Rice encode that line. In addition, DCSTAT2 computes the percentage of the

time that the various Rice modes were used.
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2.4 COMPUTER PROGRAMS

The computer programs used to simulate the basic compressions algor-

ithms and to obtain the various statistical characterizations of the input data

and the compressed data are discussed in this statistical measure section. The

programs are flexible to permit the user selection of any or all of a number of

different options. All programs have been written in FORTRAN IV or COMPASS and

run on a CDC 6500 computer. Furthermore, to provide flexibility, the overall

program was divided into several subprograms which can be used separately or in

sequence. An overview of the data flow structure is provided by Figure 2.4-1.

The interrelation and flow of the various functional programs is presented in

Figures 2.4-2 through 2.4-5, including input and output data tapes.

/L ! I ISELECTED / DETERMINATION NASA TAPES

SELECTED MSS BULK MS OF DESIRED
IMAGES CORRESPONDING TAPES SCENES
TO TAPES USED

DESIRED OBJECT CLASSES

DETERMINE COORDINATE REFORMAT
OF 30 SUBSCENES AND TAPES
4 FULL SCENES

30 SUBSCENES 2 SUBSCENES
4 4FULL SCENES

INPUT RUN MSS DATA MEASURE

PARAMETERS STATISTICS SYSTEM NOISE
PROCESSING STATISTICS

GENERATE
SSDI
SYMBOLS RECONSTRUCTION

OF DATA

HUFFMAN CODESSDI SYMBOLS I
ERROR ANALYSIS
PROCESSING

DETERMINE DATA
COMPRESSION
STATISTICS

RECONSTRUCTED
TAPES

COMPRESSED CHANNEL ERRORS
TAPES SIMULATED

Figure 2.4-1. Overall Data Handling Flow Diagram
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RUN MSS
PARAMETERS TAPE

DCSTAT1

OUTPUTS

CORRELATION
JOINT PDF
MEAN, SIGMA TAPE 15 TAPE 16
HUFFMAN CODES COMPRESSED HUFFMAN
COMP. BIT RATES SYMBOLS CODES

RUN _
PARAMETERS

DCSTAT2

BUFFER SA.TIME-VARYING
BIT RATES,
RICE STATISTICS

Figure 2.4-2. Data Flow Between DCSTAT1
and DSCTAT2

LUMPL

PKHUF

Figure 2.4-3. Huffman Compression and Reconstruction

Fl ow Diagram
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Figure 2.4-3. Huffman Compression and Reconstruction
Flow Diagram
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CAPE

INUt

RSTRIC

Figure 2.4-4. Rice Compression and Reconstruction
Flow Diagram

TAPE 112 TA3 14

(IMAGERY)

512 WORDS

54 RECORDS

BAND 580 BAND
1 RECORDS 2

108 RECORDS
1376 27.-L 202 54 202 S L 27
RECORDS WORDS WORDS WORDS WORDSWR D4AND 580 BAND

3 RECORDSD

54 RECORDS

EACH BAND CONTAINS
808 X 580 PIXELS

Figure 2.4-5. Generation and Format of TAPE 4
Containing Reconstructed Imagery
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The program DCSTAT1 begins by extracting the data from the MSS tape and

reformatting it. It then uses the appropriately formatted MSS data to compute

scene statistics and compressed data statistics for the various compression algor-

ithms selected. DCSTAT1 generates a tape containing the sequence of transformed

differences obtained by the selected version of the SSDI , and generates the Huffmal

code to be used on the scene.

DCSTAT2 uses the tape generated by DCSTAT1 and computes the time varying

compression and buffer statistics resulting from the global Huffman, adaptive

Huffman, and Rice encoding of the scene. DCSTAT2 also generates other character-

izations of these data compression techniques for the selected scene. A two pass

organization was required because the global Huffman code can be developed only

after the probability density function has been measured for the entire scene.

For Huffman encoded data, program RSTHUF simulates the selected data

compression technique by generating a compressed bit stream and reconstructing the

data. This program operates on 1he tapes of difference symbols generated by DCSTAT1

Program BLDTAB generates the look-up table used by RSTHUF, the table being based

on the Huffman code generated by DCSTAT1. Program PKHUF generates the Huffman

coded data tape. The packed tape of a 7 track, 800 BPI, Fortran binary tape

written in external format. The data is a continuous bit stream broken up into

288 60-bit word (2160 bytes) records.

Regardless of the coding algorithm used, the output of the reconstruction

are four data tapes each containing one spectral band. These contain the re-

constructed data for a scene comprising an area twenty-five nmi square. These four

tapes are then packed to obtain TAPE 4 which contains the reconstructed data with

spectral bands packed as shown in Figure 2.4-5.

The final step is the construction of the photographic copy of the

imagery. TAPE 4 containing the images is processed on a General Dynamics L70

laser printer/scanner. The L70 is an eight-bit laser film writer with 256

intensity (grey) levels. The film writer constructs photographic negatives

from which positive prints are then made at TRW. Note that each negative con-

tains all four spectral bands, formatted as shown in Figure 2.4-5, to prevent

negative and print processing variations which could otherwise occur. This

technique also provides all spectral components of a scene on the same print

to facilitate comparisons.
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2.4.1 Program DCSTAT1

Program DCSTAT1 uses the MSS data tapes to generate the various statistical

measurements of the input and SSDI-transformed data as well as tapes of the SSDI

symbols. DCSTAT1 gives the operator flexibility in selecting options for each run.

The output tape can be based onthe SSDI, SSDIA, or the SSDIAM algorithms.

The various statistical outputs which can be selected are:

* Data mean and variance in each spectral band and over all

bands.

" First difference pdf in each spectral band for the SSDI, SSDIA,

and SSDIAM transforms.

* Joint spectral-spatial correlation along the scan lines.

* Overall pdf for SSDI, SSDIA, SSDIAM, and Shell symbols.

• Huffman code for SSDI, SSDIA, SSDIAM, and Shell symbols.

* Scene entropy and average code length for SSDI, SSDIA, SSDIAM,

and Shell transforms.

The flow of DCSTAT1 is given in Figure 2.4-6. The program is initial-

ized and the various input parameter options are entered through namelist INPUT.

These parameters (with default values indicated in parentheses) are:

• KSTOP - No. of scan lines in scene (100)

* JSTOP - No. of pixels in each scan line (100)

* BLUR - Blur option = "ON" or "OFF" (OFF)

* JUMP - Correlation step sizes (1, 2, 4, 6, 8)

* BANDS - Band pairs used for probability ellipse (1, 2)

* CTAPE - Tape output = "ON" or "OFF" (ON)

* IMODE - Tape output symbols = "SSDI", "SSDIA," or "SSDIAM," (SSDI)

* IPROB - pdf computation = "ON" or "OFF" (ON)

* ICOR - correlation option = "ON" or "OFF" (ON)

, IELPS - ellipse option = "ON" or "OFF" (ON)

* ICOMP - compression option = "ON" or "OFF" (ON)

* NSKIP - No. of initial records to skip

* ISLS - Starting scan line

* ISLE - Ending scan line

SIPS - Starting pixel location

IPE - Ending pixel location
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DCSTATI

INITIAULIZE 13=
PROGRAM

IB 
=  

I1

PIX = PIXEL INTENSITY FOR BAND 1B
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LINE DIFI(1) = DIFI (I) - DIF1(I-1)
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Figure 2.4-6. Flow of Program DCSTATI
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Figure 2.4-6. Flow of Program DCSTAT1 (Continued)
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These last five parameters are used by subroutine EXTMSS which extracts

and unpacks the MSS data from the input tape and reformats the data to a form

acceptable by DCSTAT1. The flow of subroutine EXTMSS is given in Figure 2.4-7.

EXTMSS

READ
NSKIP
RECORDS
TAPE7

DETERMINES
a) ISTCDCWORD
b) POSITION OF

IST BYTE
c) NUMBER OF BYTES

READ
SCAN
LINE

UNPACK
SCAN LINE

STORE BYTES
INTO FLOATING
POINT ARRAY
BY BAND

NO LAST
SCAN LINE

YES

RETURN

Figure 2.4-7. Flow of EXTMSS

The first three scan lines are read from the reformatted data for each
spectral band. Three lines are initially read in each band to provide the infor-

mation required if averaging and blur are to be performed. If BLUR is ON the inpt

samples are blurred in each spectral band to simulate a decreased sensor resolutic

using the equation:

I(i,j) = .68 I(i,j) + .28 [I(i,j-1) +I(i,j+-1) + I(i+1,j) +.I(i-1,j)]

+ .04[I(i-1,j-1) + I(i-1,j+1) + I(i+1,j-1) + I(i+1,j+1)]
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Each intensity is used to update vectors S and S2 which will eventually contain

the mean and second moment of the scene.

If CTAPE is ON, the initial intensities at the beginning of the scan line

in each spectral band are written onto the output tape. If ICOR is ON the spectral-

spatial correlation is performed by taking the normalized inner product of the

vectors corresponding to pixels separated on a scan line by the distances given by

the parameter JUMP. The correlation value for each pair of pixels is entered into

array COR. These values will later be averaged over the scene and printed as a

correlation table.

The first differences are generated if ICOMP is ON. The first

differences are obtained in three ways depending on whether SSDI, SSDIA, or SSDIAM

is being simulated. For SSDI, the first differences are obtained by substracting

successive pairs of intensities in each band, the difference being stored in array

DIFI. For SSDIA, the first differences are obtained by subtracting each intensity

from the average, A, of surrounding intensities, the differences being stored 
in

array DIF2. For the SSDIAM, each intensity is mapped appropriately and then the

first differences are obtained in the same fashion as used for the SSDIA, the result

being stored in array DIF3. DIF1, DIF2, and DIF3 increment the probability vectors

PlS, P1SA, and P1SAM. Simultaneously, array ELIPS is updated once per set of four

spectral intensities for later use in generating the joint probability ellipsoid.

The second differences are then computed using the appropriate first

order differences as computed by the SSDI, SSDIA, and SSDIAM. Three second

differences and the appropriate first difference for spectral band one are used

to increment the overall probability vectors P2S, P2SA, and P2SAM. These vectors

are used to determine the Huffman codes for the scene. The differences symbols

forming either the SSDI, SSDIA,or the SSDIAM are written on the output tape if

CTAPE is ON. IMODE determines the compression mode written on the output tape.

The largest symbol difference in magnitude for each set of four

spectral intensities is then used to determine which shell that set would

occupy if Shell coding were used. Probability array PSH is then updated,

corresponding to that shell. PSH is used to determine the optimum Huffman

code for Shell coding

The above procedure is performed on a pixel by pixel basis. When the

last pixel in a scan line is encountered the next scan line of data is read from

the input tapes, stored, and the above computations are performed. After the
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last scan line has been read and all operations performed, computer output oper-

ations begin. First, parameter S is divided by the number of intensities used to

generate the scene mean p. Parameter S2 is divided by the same number to obtain
2 2

the second moment. The scene variance a is obtained by subtracting p from

the second moment. These operations are performed for each spectral band and for

all bands averaged together. The means, variances, and first difference prob-

abilities are then printed.

The correlation is printed as a function of the step size for values of

correlation between .71 and 1.00. The joint probability ellipse is printed for

each pair of bands desired. In the printout the joint occurrence (0,0) is

normalized to the value 100 and all other joint probabilities are normalized by

the same factor to present an output product that can be easily interpreted. The

SSDI, SSDIA, SSDIAM, and SHELL symbol probabilities are displayed in the ranae

[-18, 18]

The remainder of the program generates the entropy and Huffman codes

for the SSDI, SSDIA, SSDIAM, and SHELL encoding modes. All four calls to sub-

routine Huffman are alike, the only difference being the probability vector used

to compute the appropriate Huffman code. Given the probability of occurrence of

each symbol over the scene, Huffman returns the sequence of coded bits associated

with each symbol and the average code length. Subroutine Huffman is fully described

in section 2.4.5. Scene entropy is computed for each coding made from the same

probability vector by the equation:

H =-Y p(i) log 2 p(i)

i

Depending on the IMODE specified by the operator, either the SSDI, SSDIA, or

SSDIAM Huffman code table is written onto TAPE16 for use by DCSTAT2 or BLDTAB.

After specifying the various input parameters to DCSTAT1 operation is

automatic and no further operator interaction is required so that the program can

be submitted either through a terminal or by batch processing. If all options

are ON program DCSTAT1 requires about 1.2 milliseconds per intensity sample.
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2.4.2 Program DCSTAT2

Program DCSTAT2 accepts the tapes containing the SSDI,.SSDIA, or

SSDIAM symbols and the Huffman code computed by DCSTAT1 for that scene

and computes the time-varying statistics for the global Huffman, and Rice

encoding. The flow of DCSTAT2 is given in Figure 2.4-8.

Input parameters are accepted via namelist INDC2. These parameters

are IBUFI, IBUF2, MODE, and PMAX. IBUFl and IBUF2 denote the buffer out-

put rate in bits/sample, with default values 3.0 and 3.5. Parameter MODE

determines the outputs desired and has three values:

MODE = 1 Buffer statistics and global Huffman statistics

2 Rice and adaptive Huffman statistics

3 All of the above (default value)

Parameter PMAX permits varying the total probability of these symbols in-

cluded in the lumped grouping for the generation of the adaptive Huffman

code.

Initially, DCSTAT2 reads input tape TAPE16 which contains the code

table, of length 256, associating each input symbol read from TAPE15 to the

global Huffman code as generated in DCSTAT1.

The first scan line of symbols is read from TAPE15 by COMPASS program

LININ. If MODE is set to either 2 or 3, HPAH is called to compute the

probability distribution of the transform symbols for that scan line. At

the end of the scan line this distribution is used by subroutine HUFMAN to

develop the Huffman code which will be used to encode the symbols from the

following scan line. This technique is used for all scan lines in the

adaptive Huffman mode except for the first line, since no a priori information

is available there. The first line is encoded a posteriori by the Huffman

code developed for that line. Thus, the first two scan lines of data have

the same code. In addition, the entropy of the scan line symbols is computed

by HPAH for use in Rice encoding. The normal call to LININ, reading the next

scan line, follows B. This read is skipped for the first scan line since it

has already been read to initiate the adaptive Huffman mode. If an end-of-

file is encountered by LININ, the program goes to H to print the overall

compression achieved on the data.
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Figure 2.4-8. Flow of Program DCSTAT2
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If no end-of-file is encountered a check is made for MODE=2. If MODE

is not 2 the number of bits required for encoding that line by the global

Huffman code is determined using the stored table. Each transform symbol

is used to call the code table and the number of bits required to code that

symbol is returned. After all symbols from that scan line have been converted

to bits, the total number of bits obtained is added to the number of overhead

bits required and this sum is divided by the total number of symbols encoded

to obtain the average number of bits required for that line of data. For the

global Huffman the overhead per scan line is equal to the number of bits

required to denote the beginning of a new scan line and the number of bits

used to send the values of-the first intensities in the scan line. The

first pixel intensities in the line are transmitted directly and not by

transform symbols in order to prevent propagation of possible errors from
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one scan line to the next line. The format used in DCSTAT2 for denoting the

beginning of a scan line is the same as that given in the appendix on ground

processing of images. The prefix code is transmitted followed by a string

of eight zero bits to initiate the scan line and the next 28 bits give the

four 7-bit intensity values of the first elements in each spectral band.

If MODE=l, the flow is transferred to G where the compression is

printed for global Huffman encoding as the average number of bits per pixel

required for that line. The average number of bits per pixel out of the

buffer (IBUF) is subtracted from the average no. of bits per pixel required

for compression to yield the average change in the buffer for that line.

This amount is added to the buffer contents left from the previous line

to yield the total buffer fill. If IBUF is greater than the average number

of bits put into the buffer, underflow occurs and a 0 is printed for the

buffer statistics of that line. In general, IBUF would initially be set

at about the average bits/pixel required for the scene and variations

of buffer fullness would be observed. After a run of DCSTAT2, buffer statistics

may reveal runs of underflow for segments of the scene where data activity

is much less than the scene average. Also, the more serious problem of over-

flow may result due to areas of the scene where data activity is much higher

than the scene average. In such cases DCSTAT2 can be rerun with an appro-

priate change in IBUF value.

If MODE is not equal to 1, the average bit rate for that line is computed

for adaptive Huffman coding. The Huffman code developed and stored in table

look-up form for the previous scan line is used to convert input symbols

into bits in a fashion analogous to that used for global Huffman encoding.

The overhead required for adaptive Huffman coding is also identical to that

required for global Huffman coding, namely the number of bits required for

denoting the start of a new scan line and the 28 bits giving the first four

intensity values.

The first operation performed for Rice encoding is the determination

of which split-pixel mode to use on the line, if any. Several checks of the

previously computed line entropy H are made. If H < 4, no split-pixel mode

is used (n=7, k=O). If 4 < H <-5 the (n=6, k=l) mode is used. If 5 < H < 6,

the (n=4, k=3) mode is used. If H > 6, the (3, 4) mode is used. As given

in section 2.1.6 the n most significant bits are Rice encoded and the k least
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significant bits are transmitted directly to provide strictly information

preserving data compression. If distortion is desired, k can be set in

the program to a value less than 7-6.

The Rice coding is performed on blocks of data in the scan line. This

block length is preset to 16 elements along the line but can readily be

changed to another value if desired. The total number of bits in the block

fundamental sequence (LFS) is first computed by determining the number of

bits required for each symbol in the block. The algorithm used is described

in section 2.3. The normalized fundamental sequence length (LFSN) is ob-

tained by dividing LFS by the total number of symbols in the block. Length

LFSN is tested to determine whether the fundamental sequence (FS) should be

transmitted directly, whether the fundamental sequence should be coded (CFS),

or whether the fundamental sequence should first be complemented and then

coded (CFS). If LFS is between 1.5 and 3 bits/symbol FS is transmitted,

if LFS > 3 bits/symbol CFS is transmitted, and if LFS < 1.5 bits/symbol

CFS is transmitted. Subroutine TOTALB assigns to FS or IF- the code described

in Appendix C and computes the total number of bits required for coding that

block. If FS is transmitted directly, the number of bits required for that

block is LFS. Two overhead bits are added per block to denote the Rice mode

used for coding that block of data.

After the last block of data in the scan line has been encoded,additional

overhead is added to the total number of bits already computed. If a split-

pixel mode was used for that line, overhead is added for transmitting the k

least significant bits. This overhead amounts to k times the number of

symbols in the line of data. At the beginning of each scan line overhead is

used to give the decoding algorithm line initialization information including

the 7-bit intensities of the first element in each spectral band.

At the end of each line the compression statistics are printed both

on a line-by-line basis and globally. Depending on the value assigned to

MODE, either the buffer statistics and the average bits/sample for the 
global

Huffman coding, the average bits/sample for adaptive Huffman and Rice

coding, or all four are printed. After the last scan line of data, the

percentage occurrence of the various Rice modes are printed (if MODE 
is not

set to 1).

2-44



2.4.3 Program BLDTAB

Program BLDTAB generates the look-up decoding table used by program
RSTRCT to reconstruct the compressed data. BLDTAB initially reads TAPE16,
the tape generated by DCSTAT1 which contains the Huffman code developed
for the given scene. Other inputs entered for each run are N, the number
of code words, LCODE, the lumped (grouped) prefix code word, and LUMPL, the
number of bits in the lumped code word array. IHC contains the Huffman code
words from TAPE16 and array IC gives the corresponding number of bits in each

code word.

The program generates a table ITAB of length 212 corresponding to all
possible sequences of twelve bits. Each entry in the table contains twelve
bits of information, the most significant eight bits giving the first
difference symbol which is Huffman decodable in the twelve bit address of
that entry and the least significant four bits give the number of bits
contained in that decodable word. Both pieces of data are required by program
RSTRCT. The structure of BLDTAB is given in Figure 2.4-9.

If a non-grouped symbol Ai is present which produces a code word of
length j bits, the value (Ai, j) is entered at all locations in the table
which have the binary representations with the most significant j bits equal to
the code word Ci. The number of entries of (Ai,j) is equal to 212-j. For entries
where the most significant bits are the lumped code word CL (the length of CL is
normally constrained to be at most four bits), the following eight bits give the
symbol level which occurred or, if the eight bits are all zeros, denote the start
of a new scan line. The entries in the table corresponding to addresses beginning
with codeword CL use the following eight bits in the address as the actual level
of the grouped symbol which lies in the range [-128,128]. Parameter IT shifts the
lumped code word to head the 12 bit string. ISFT equals the total number of bits
in CL and the eight bits following CL. IS is the number of bits left in the twelve
bit string in the event that CL occurs (IS =12-ISFT).

The loop ending at B sets up all lumped entries in the table required by
the given codeword. If IS is zero, only 256 entries need be set since ISFT = 12.
If IS is greater than zero, each of the 256 lumped values must be put into 2IS

locations. ID, initially zero, is shifted IS bits and IW represents the appropriate
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BLDTAB

READ
INPUTS

READ
TAPE 16

IT = LCODE + 2 (12-LUMPL) 
I = O

ISFT = LUMPL + 8

II I !HC(I,,

ISFT = IC()

IW = (127 + 1)*16 +ISFT

IS = 12 - ISFT

N2 = 2 Is

LUMPED TABLE ENTRY LOOP ID =ICD*N2+1ID =ICD*N2+1

12 = 0

12 = 12+1

ITAB(ID) = IW
ID= ID +1

12:N2

IW = (1-1) *16 + ISFT

J=IT+ID+I

ITAB (J)+ IW

Y ES

IS = 0

ITAB(J+1) = IW

ID=ID+ 1

Figure 2.4-9. Flow of Program BLDTAB
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table entry of level plus bits to be stored in ITAB at address J. As mentioned,

if IS is not zero, 2
IS -1 other locations must be filled with the same information.

After ID is incremented by one, the loop is continued.

Following generation of the lumped symbol entries, the non-lumped symbols

are stored. In each loop, ending at C ICD represents the Huffman code word and

ISFT represents the number of bits in that word. IW represents the table entry

(Ai,j) to be stored in 2N2 locations of ITAB. These entries are set by loop C.

After all of the non-lumped symbols have been set, the entire 212 entries

of ITAB have been generated. Figure 2.4-10 gives a segment of table ITAB. The

top section of Figure 2.4-10 shows a portion of the lumped symbol table entries and

the remainder gives entries corresponding to symbol levels -2 and 2. Table ITAB is

written onto TAPE8.

2.4.4 Program PKHUF

Program PKHUF, written in COMPASS, generates the comoressed data tape

using the Huffman code from TAPE16 and the symbol tape, TAPE15. PKHUF reads the

successive transform symbols from TAPE15 and looks up the corresponding code word

from the stored table. These code words are then packed onto the output tape,

TAPE7, using subroutine PACODE. The code bits are packed in a manner permitting

a code word to overlap computer words or tape records. PKHUF is shown in Figure

2.4-11.

At the beginning of a scan line, the lumped code bits CL are transmitted

followed by eight zeros. This is followed by a single bit denoting the encoding

mode used for the scan line. Provision is made for either SSDI or SSDIA encoding

and this first bit informs the reconstruction program RSTRCT as to the mode used.

The following 28 bits represent the actual seven bit intensities of the first scan

line element in each of the four spectral bands. This information serves to

initiate the algorithm used for reconstruction and prevents the propagation of

possible errors from one scan line to the next.

Subroutine INLINE reads in each new scan line of data. For this new

scan line, PACODE packs code word CL and the one bit of mode data onto the output

tape TAPE7. The following four words read from TAPE15 contain the first intensiti(

from each spectral band. These 28 bits are packed onto the output tape. Forthe

2-47



17,12 18,12 I1,12 20,12 21,12 22,12 23,12 24,12 25,12 26,12

27,12 28,12 29,12 30,12 31,12 32,12 33,12 34,12 35,12 36,12

37,12 38,12 39,12 40,12 41,12 42,12 43,12 44,12 45,12 46,12

47,12 48,12 49,12 50,12 51,12 52,12 53,12 54,12 55,12 56,12

57,12 58,12 59,12 60,12 61,12 62,12 63,12 64,12 65,12 66,12

67,12 68,12 69,12 70,12 71,12 72,12 73,12 74,12 75,12 76,12

77,12 78,12 79,12 80,12 81,12 82,12 83,12 84,12 85,12 86,12

87,12 88,12 89,12 90,12 91,12 92,12 93,12 94,12 95,12 96,12

97,12 98,12 99,12 100,12 101,12 102,12 103,12 104,12 105,12 106,12

1C7,12 108,12 109,12 110,12 111,12 112,12 113,12 114,12 115,12 116,12

117,12 118,12 119,12 120,12 121,12 122,12 123,12 124,12 125,12 126,12

127,12 128,12 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4

-2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4

-2,4 -2,4 -2,4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4

-2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4

-2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4

-2, 4 -2,4 -2, 4 -2,4 -2, 4 -2, 4 -2, 4 -2,4 -2, 4 -2, 4

-2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4

-2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4

-2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4

-2,4 -2, 4 -2,4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4

-2, 4 -2, 4 -2, 4 -2, 4 -2, it -2, 4 -2, 4 -2, 4 -2, 4 -2, 4

-2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4

-2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4
-2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4

-2,4 -2, 4 -2,4 -2,4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4

-2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4

-2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4

-2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4

-2,4 -2,4 -2, 4 -2,4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4

-2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4

-2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4

-2,4 -2,4 -2,4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4

-2, 4 -2, 4 -2, 4 -2, 4 -2, '4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4

-2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4

-2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4

-2,4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2, 4 -2,4 2, 4 2, 4

2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4

2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4

2, 4 2, 4 2, 4 2, 4 2, 4t 2, 4 2, 4 2, 4 2, 4 2, 4

2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4

2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4

Figure 2.4-10. A Segment of Table ITAB



yPKHUFC

NAMELIST I 
=

INPUT

READ ID = .
TAPE 16

ID =ID+128

LMB = LUMPL + 8
LMPNL = LMP .* 2 + 510
NLNB = LNB + 1

A PACODE

INLINE

INPUT
SCAN LINE

1=1+1

LAST SCAN YES T
LINE? T

I NNP

NO

A

SCODE 

TO PACK (ICD)
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PACODE
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Figure 2.4-11. Flow of Program PKHUF
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rest of the scan line, the transform symbols Ai from TAPE15 are used to obtain

the associated code words C.i which are then packed onto TAPE15. There are NP symbols

per scan line, each stored as a level between -128 and +128. To access code word

table IHC, 128 is added to each symbol level read from TAPE15.

The program proceeds from one scan line to the next, packing the bits

as shown into one long bit stream until the last scan line is encountered at which

time the program stops and an end of file is generated.

2.4.5 Program RSTHUF

Program RSTHUF reconstructs the data using the compressed data on

TAPE7 and the look-up decoding table ITAB from TAPE8. To initialize RSTHUF,

table ITAB is read from TAPE8 and input parameters NLINE and LUMFPL are

entered. NLINE is the number of lines to be reconstructed and LUVPL is the

rumber of bits in the lumped prefix code word. Masks MSK1, MSK2, and MSK3

are set to mask off the seven bit intensity values from the compressed data

tape (MSK3) and to separate the eight bit symbol level (MSK1) and the four

bit shift value (MSK2) from each twelve bit entry in table ITAB (see Figure

2.4-12).

Parameters IL, the scan l c desi n n a t n  is initialized to zero and

ISFT, the number of shifts of the input data, is set to twelve and 
the first

coded record is read via subroutine INTAP. Locp 1CO reconstructs each set of

four intensities corresponding to a ground picture element. Loop 100 obtains

the set of four transform differences to be decoded by use of subroutine GET12.

GET12 returns each twelve bit sequence from the input record using the 
previous

shift value ISFT and stores this word in IWD. IWD is used as address to table

ITAB, returning the entry ITAB (IWD). This entry is masked by MSK2 to return

ISFT, the number of shift required for the next decoding operation, and 
ID(1)

the first symbol in IWD. The value ID(1) is then shifted left four places to

obtain the true value of the symbol.

ID(1) is compared to the value 256 in order to check for 
the occurrence

of a new scan line. The start of a new scar line is denoted in the compressed

data by the lumped prefix code word followed by eight zeros. The corresponding

ITAB entry gives the symbol value 256 and ISFT = 12.
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y RSTHUF

I
N PUT :N LIN E

LUMPL

SET MASKS:
MSKI, MSK2, MSK3

READ
INPUTS

S A ITI =AND(OWD, MSK3)

IL = O
ISFT = 12

INTAP FALSE
READ CODER
RECORD

IMODE = 2

100

GET 12 (IWD, ISFT) 
ISFT

GET 12 BITS
IN IWD

ISFT = AND(ITAB(WD), MSK2) 1= 0
ID(I) = AND (ITAB(IWD), MSKl)

C

500
=1+ 1

ID = 0

GET 12

WRITE 
(IWD, ISFT)

NEWL(I,J)
1 = 1,4

ISFT = 1

IL= NLINE YES STOP

NEWL (1, 1) =
NO AND (IWD, MSK1)/32

IMODE 2

1:4

OLDL(I, J) = NEWL (1,J)
I = 1,4

IP = 2

GET 12
(rWD, LUMPL+8)

Figure 2.4-12. Flow of Program RSTHUF
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A

ID:225 00

NEWL(O, IPN) =NEWL(, IP-I) + JD OLD(1, IP-1)-LD(I, IP
0 OLD(1, IP1) /4

4V 1
O

JD = JD +JD ID(1+1)

Figure 2.4-12. Flow of Program RSTHUF (Continued)

At the start of a scan line flow shifts to point 500. If not the first

scan line, the previous line of reconstructed data (NEWL) is written onto the

output tape. If not the last scan line, subroutine GETl2"shifts the input

datato get the next twelve bits of code. The first bit gives the mode (SSDI

or SSDIA) used for that scan line. That bit, masked by MSK3, is checked to

set IMODE. If I = 0, IOMCE = 1 for SSDIA, otherwise IMODE = 2 for SSDI. The

following 32 bits are the true intensity values of the first element in each of

the four spectral band. Loop 600 reconstructs these intensities in NEWL(I,1).

After regenerating these four intensities, line counter IL is incremented by one

and pixel counter IP is set to 2.

Normal SSDI or SSDIA reconstructedis performed if ID(I) 5 255. IMODE

determines the algorithm used on that line of data. If IMODE = 2, SSDI

reconstruction is performed by loop 300 using the set of four symbol values

obtained in loop 100 and the previously reconstructed pixels in the line.

These reconstructed intensities are stored in NEWL (I, IP), where I denotes

the spectral band and IP denotes the position of the element along the scan

line.
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If IMODE = 1, SSDIA reconstruction is performed by loop 400 for each

set of four symbols obtained by loop 100. First, as described on page

an average of the four appropriate reconstructed intensities is computed in

each spectral band. These averages (A) are used together with the difference

symbol values to reconstruct the intensities in NEWL. After the last line

has been reconstructed and written on the output tape, IL = NLINE and RSTRCT

terminates.

The flow of subroutine GET12 is given in Figure 2.4-13. Subroutine

GET12 extracts each twelve bit sequence from the input tape, storing the

sequence in IWD. Parameter ISFT is entered through the call and gives the

number of shifts required to correctly position the new bits in IWD so that

a new code begins in the first bit position of IWD. GET12 handles the various

bookkeeping and bit picking tasks required when code words overlap successive

computer words or tape records.

2.4.6 Program CRICE

Program CRICE generates the Rice-compressed data tape RICEP. CRICE

reads TAPE15, generated by DCSTATI, which contains the sequence of difference

symbols (either SSDI or SSDIA), Rice-encodes these symbols, and outputs the

data into a continuous packed bit format onto tape RICEP. The flow of CRICE

is given in Figure 2.4-14 and subroutine SPLIT, called for the split-pixel

mode, is detailed in Figure 2.4-15. Parameter KSTOP specifies the number of

scan lines to be compressed. No input specifying the number of pixels per scan

line is required since information designating the start of a new scan line is

contained in TAPE15.

For each scan line, the program begins by reading in a line of data

symbols and computing the probability distribution function of the symbols

for subsequent use in generating the line entropy. The decision as to the

split-pixel mode to be used on a line of data is based on the symbol entropy

of the previous line. For this reason, the first scan line of data is encoded

with the split-pixel mode OFF. With subsequent lines for which a split-

pixel mode is required, subroutine SPLIT is called. For a given (n,k) mode

each integer symbol Ai is divided by 2k to obtain the new symbol values to

be Rice encoded. The difference between this scaled symbol and Ai IRR, is

generated for subsequent direct transmission. This operation is described

in section 2.3.2.
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Figure 2.4-13. Flow of Subroutine GET12



C

DO 250
rI IP=J, JE

CRICE

---- - D00 250

INPUT
KSTOP

ID = IDELT (IB, IP)

READ ID : 9999

TAPE 15

NFS=NFS+ 1I
IFS (NFS) -1

IS : ID NONE = NONE+I1
IDELT (TB, IP) = 9999

DO 800
IL = I, KSTOP

NFS= NFS+1
IFS(NFS)= NONE : 64 D

LININ

DEIS= 
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PROBABILITY
VECTOR ON IDELT

A
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NO 1- -- -- DO 270
IC 

= 
1, N

OUTPUT
LINE
OVERHEAD I IFS(IC) = IFS(J)*4+FS(IH)* 2 + IFS(1 + 2)
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Figure 2.4-14. Flow of Program CRICE
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1 = l,N I= 1, N -
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NB=3
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F S
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Figure 2.4-14. Flow of Program CRICE (Continued)
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SPLIT

INPUT
IDVD, JS, MODE
IDELT

SSDI MODE SSDIA

RECONSTRUCT RECONSTRUCT
SCAN LINE BY SCAN LINE BY
INVERSE SSDI INVERSE SSDIA

IRR = i/2K

IDELT = Ai - IRR.* 2
K

SSDI MODE SSDIA

IDELT=SSDI IDELT=SSDIA
ON SCALED ON SCALED
SCAN LINE SCAN LINE

RETURN

Figure 2.4-15. Flow of Subroutine SPLIT

Subroutine NEWL outputs the two bits of overhead data required at the

start of each new scan line to designate split-pixel mode used and the initial

pixel intensity values. Loop 250 computes the fundamental sequence for each

block of 16 pixels (64 symbols) in the scan line by simulating the wiggle

operation given in 2.3.1. The number of bits in the sequence NFS is normalized

by the number of samples to obtain LFSN. The fundamental sequence, augmented

if necessary, is sub-divided into groups of three bits.

Based on the value of LFSN, the fundamental sequence is transmitted

directly (BLKID = 0), coded directly (BLKID = 1), or complemented and coded

(BLK(D = 2). At the beginning of each data block PACODE generates the block

overhead bits required to specify the Rice mode used. After the fundamental
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sequence has been encoded as required these bits are then packed by PACODE.

If the split-pixel mode is operable for that block, flow proceeds to F where

the residuals IRR are sequentially packed by PACODE.

The above operations are performed block-by-block until the end of the

scan line is encountered. At this point the entropy H is computed for that

scan line to determine which split-pixel mode, if any, is optimal for use on

the following scan ine... .. (see 2.3.2). If not the last scan line, the program

flow returns through loop 800 to process the following scan line. After the

last scan line has been processed, subroutine OTAPE empties the output tape

buffer and program CRICE terminates.

2.4.7 Program RSTRIC

RSTRIC reconstructs the Rice encoded data packed on RICEP by program

CRICE. The flow of RSTRIC is given in Figure 2.4-16. The operation of

this program is of greater complexity than that of RSTHUF used for recon-

structing Huffman encoded data since in addition to determining the compres-

sion mode of the data (SSDI or SSDIA) the reconstruction mode must be

determined for each block of data. As illustrated for a block of 16 pixels

(64 intensity samples), each block can be encoded by transmitting the

fundamental sequence (FS), the coded fundamental sequence (CFS), or by

complementing and coding the fundamental sequence (CF ). In addition, each

line can be transmitted in the split-pixel mode. These various modes are

communicated to the reconstruction algorithm in the form of line and block

overhead bits given by the format included in section 2.4.6.

Input parameter NLINE specifies the number of lines to be reconstructed

within loop 800. Subroutine INTAP reads the first record from the input tape

of encoded data and GETS, similar in function to GET12 of program RSTHUF,

obtains the first five bits in IWD to determine the new line identification

and the mode (SSDI or SSDIA) to be used for reconstructing the data. The

following 28 bits are used to establish the initial intensities in each

spectral band. Following this, the next two bits give the split-pixel mode

used for compressing that line of data. After this initialization of line

operations, block reconstruction is performed until the next sequence of bits

occur denoting the start of a new scan line.
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Figure 2.4-16. Flow Diagram of Program RSTRIC

2-59



DO 520
= 
= 

1, 16

F

JD = IRS (J)
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NWFigure 2.4-16. Flow Diagram of Program RSTRIC (Continued)

IRS(2-6IS

IS :0 IS= S+1
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The first two bits of block information denote which of the three

Rice modes are used for that block. These bits are denoted by ID; if ID = 0,

the FS is used, if ID = 1, the coded FS is used, and if ID = 2, the complemented

and coded FS is used. If ID = 1 or ID = 2, flow goes to point C to regenerate

the fundamental sequence. Five compressed bits are fetched at a time in IWD

to address array IFSC which contains the decoding table. IC is the index to

the code word sent and NONE counts the number of one bits decoded in the

fundamental sequence.

Vector IFS contains the regenerated fundamental sequence, complemented

if ID = 2, and ISFT contains the number of bits in the current codeword. To

decode the next codeword the compressed bit sequence is shifted by ISFT bits

and the following five bits are extracted. This procedure continues until

there are 64 one bits in the decoded fundamental sequence, implying that

all codewords in the block have been decoded. If ID = 0, the fundamental
sequence is regenerated directly in IFS by extracting the compressed bit string

until IFS contains 64 one bits.

Following reconstruction of the fundamental sequence in IFS, flow

proceeds to D and loop 250 which initializes the 64 compressed symbols (IRS)

to be reconstructed and the 64 residuals (IRR) used for the split-pixel

mode. If a split-pixel mode (n, k) is used, loop 255 extracts the following

64k bits to regenerate these residuals in vector IRR.

Loop 300 regenerates the vector IFS of symbols generated by the SSDI or

SSDIA algorithms. The technique used to generate the fundamental sequence

involved wiggling through the symbol levels in the order, 0, 1, -1, 2, -2, 3,
etc. and the inverse of this operation is performed to obtain these symbols

in IRS. Parameter IS, initialized to zero, keeps track of the symbol value
being reconstructed in each pass. Initially, the first 64 bits of the

fundamental sequence are tested and the presence of a one bit at location

I sets entry IRS(I) = 0. This first pass reconstructs all symbols having a

zero value. On successive passes, the bits IFS are tested and the presence

of a one bit in location I sets IRS(I) = IS, the symbol level currently being

generated. Since the entries in vector IRS were initialized to 1000, the

presence of any other value in an entry of IRS signals that this symbol has
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already been reconstructed and this symbol is skipped on succeeding passes.

Each occurrence of a one bit in the fundamental sequence increments parameter

NONE. When NONE = 64, all symbols have been reconstructed for that block

and flow exits loop 300 to point G which contains the inverse SSDI or SSDIA

algorithm, depending on the mode used for compressing the data. Loop 510

reconstructs each set of four intensities based on the symbols IRS and

residuals IRR which have been regenerated from the compressed data. Loop
520 reconstructs the sixteen pixels contained in the current block. If the

SSDIA mode is used, LEWL contains the preceding reconstructed pixel intensities

in that scan line. If the SSDIA mode is used, LEWL contains the average of

the four appropriate reconstructed intensities, as obtained by subroutine AVG.

After reconstruction of a block, GET5 extracts the next five bits and

tests the following two bits to determine whether the following compressed

data represents another block in the same scan line or the start of a new

scan line. If a new scan line, the current reconstructed scan line of data

is output on a tape and flow proceeds within loop 800 until all NLINE scan

lines have been reconstructed.

Provision is made through DATA statements for varying block sizes,

split-pixel modes, and selection of code words for the fundamental sequence

in the event that the operator decides to change these parameters of the Rice

algorithm.

UNCODED
LID FIRST ELEMENT BID RICE CODED n BITS k BITS

2 Bits 28 Bits 2 Bits Variable Lk bits
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3. RESULTS OF THE INVESTIGATION

This section discusses the significance of the various measurements

performed on the ERTS tapes, the selection of scenes processed, and

summarizes the results obtained for both normal ERTS data and for imagery

containing anomalous data. Conclusions and tradeoffs based on these

results are discussed further in section 4.

3.1 SUMMARY OF PROCESSING PERFORMED

During the data analysis phase of the study, thirty subscenes and

four full scenes were processed and the following output quantities were

obtained for each scene:

1. MSS Data Statistics

a. Data mean and variance per spectral bands and average

overall bands.

b. Cross spectral-spatial correlation

c. Spectral correlation (joint probability density function)

2. Data Compression Performance

a. Probability distribution function of first differences

obtained by the SSDI, SSDIA, and SSDIAM modes.

b. Probability distribution function of the Shell, SSDI,

SSDIA, and SSDIAM symbols.

c. Compression achieved by fixed Huffmar coding of the scene using

the Shell, SSDI, SSDIA, and SSDIAM modes.

d. First-order entropy of these distributions.

e. Line-by-line and overall time-varying data compression using

the fixed Huffman, adaptive Huffman, and Rice algorithms on

the selected compression mode.

f. Buffering statistics of the Huffman or Rice Code.

g. Huffman codes associated with each of the compression modes.

All four full scenes were compressed and reconstructed using the

SSDIA/Huffman or SSDI/Rice algorithm and photographs were made from the re-

constructed data. In addition to the above outputs, the following data
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have been obtained for the principal full scene, ERTS 1015-17440:

a. Photographs of the reconstructed image obtained by use of the

essentially information preserving SSDIAM algorithm with

mappings of + 1 level and + 3 levels.

b. Photographs of reconstructed images with the compressed data

corrupted by simulated channel errors (10- 5 and 10-6 bit

error probabilities).

c. Probability distribution of the original intensity levels

of the MSS data.

3.2 SCENES AND OBJECT CLASSES PROCESSED

During the investigation thirty 5 x 5 nautical mile square subscenes

and four 25 x 25 nautical mile square full scenes were processed. The

selection of scenes to be processed were based on several criteria including

availability from NASA-ERTS User Services. A minimal set of nine object

classes was specified in the data analysis plan. This set of object classes

is as follows:

I. Clouds

2. Bodies of Water (Lakes, Oceans)

3. Rivers

4. Snow

5. Mountains

6. Agriculture

7. Plains

8. Deserts

9. Forests.

These classes were based on coverage of the predominant objects

encountered on earth survey missions rather than selection by the criteria

of usefulness to current principal investigators. Classes were further chosen

to span the range of source data activity , thereby serving to roughly

bound the expected compressed data rates which could occur.

In addition to the nire classes given above, the object classes of
"cities" and "grassland" were added. In addition to the homogeneous object
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classes, several additional composite classes were selected corresponding

to class variants which are also commonly encountered and which would be

expected to yield different data and compression statistics. These object

classes and the basis for their selection are detailed below:

* Coastline and Harbor - These features are encountered at

the bcundary between land and bodies of water. Since the

data statistics and characteristics of these two features

vary greatly, it is of interest to determine what effect

the land-water interface has on the various compression

algorithms, especially for the global Huffman codes which

develop a code optimal for neither the water nor the land.

* Island - Similar to the coastline class, this object is of

primary interest in the determination of the time-varying

bit rate and buffer statistics as the data activity varies

from very low (ocean) to high (island).

* Haze - The effect of haze obscuring the land features amounts

to a decrease in contrast and data activity compared to the

scene without haze. The predominant characteristic sought is

the decrease in bit rate produced by such haze.

* Scattered Clouds over Water - This class produces a wide

distribution of difference intensities in the compressed

symbols due to the large intensity steps between the bright

clouds and dark water. Processing this class serves to evaluate

the ability of the compression algorithms to hardle such symbol

distributions.

Certain classes subject to wide variations were processed as conditions

charged. As an example, three variants of the object class containing

mountains were selected; bare mountains, mountains with vegetation, and

mountains with snow cover. As expected, the results differ substantially.

Several scenes containing agriculture were processed, corresponding to

differing crops and field sizes.

The statistics and compressed rate can vary on any given object

class and for any given location depending on varying factors such as the
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time of year, sun angle, and cloud cover. While it was not possible to

obtain results for all such variations within the scope of the current

investigation, it is felt that the results which have been obtained are

representative of each class and serve the objectives of the study.

The object class subscenes were chosen to encompass an area of

25 square miles since the chosen object classes can be located to span

such an area and such a size yields statistically significant results.

The 625 square mile full scenes were selected either to contain a suitable

grouping of object classes or to ascertain whether the data and compression

statistics of an object class covering such an area would deviate signifi-

cantly from the statistics of a subscene containing that class. Emphasis

was given to subscene processing since the degree of compression expected

for a given full scene can be estimated by knowing the percentage occurrence

of the various object classes in the full scene and the average compressed

bit rate obtainable for the various object classes, as determined by sub-

scene processing. Conversely, since full scenes normally contain several

object classes, it is not possible to extrapolate the bit rate and statis-

tics measured for the full scene to subs -enes and object classes contained

within it.

After selection of object classes, tapes were selected from supplied

imagery to include the various required subscenes and full scenes processed

during the study. Each entry of Table 3.1 gives the scene identification number,

object class description, location, earth coordinates, ERTS tape number, and the

location (in pixels) of the upper lefthand corner of the scene processed.

Note that scenes one thrcugh thirty are subscenes and numbers thirty-one

through thirty-four are full scenes. These scene identification numbers will

be used throughout this report.
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Table 3.1. Parameters of Scenes Processed

SCENE
NO. CLASS DESCRIPTION LOCATION COORDINATES(N.W) TAPE NO. STRIP (STARTING PIXELS)

1 CLOUDS KANSAS (36',40"; 101',10") 1043-16573 4 (230,180)
2 BAY CHESAPEAKE BAY (38',05"; 76',15") 1062-15190 4 (1900,420)
3 LAKE LAKE MICHIGAN (43',15"; 87',15") 1017-16093 4 (220,370)
4 OCEAN PACIFIC OCEAN (34',15"; 119',30") 1018-18010 1 (1300,10)
5 LAKE LAKE ST. JOHN, CAN. (48',35"; 72',00") 1025-15103 2 (880,420)
6 SNOW VERMONT (46',10"; 73',10") 1170-15173 4 (400,420)
7 COASTLINE MASS., N.H. (42',45"; 70',45") 1167-15011 3 (1080,350)
8 CLOUDS (OVER FOREST) QUEBEC, CANADA (49',20"; 70',30") 1025-15103 4 (1800,301)
9 DESERT IMPERIAL VALLEY, CA. (32',30"; 113',50") 1015-17440 4 (2050,600)

10 HARBOR LONG BEACH, CA. (34',05"; 117',30") 1018-18010 4 (1850,20)
11 PLAINS TEXAS PANHANDLE (35',40"; 103',00") 1043-16573 1 (1700,540)
12 CLOUDS (OVER OCEAN) SOUTHERN CALIFORNIA (33',45"; 119',30") 1018-18010 1 (2010,420)
13 FOOTHILLS SAN BERNARDINO, CA. (33',15"; 113',45") 1106-17501 4 (1000,301)
14 FOREST VIRGINIA (38',00"; 77',30") 1062-15193 2 (300,270)
15 ISLAND CATALINA, CA. (33',25"; 118',30") 1108-18020 3 (510,600)
16 HAZE (OVER MOUNTAINS) QUEBEC (45',50"; 75',20") 1170-15173 2 (1000,440)
17 CITY LOS ANGELES, CA. (34',00"; 118',10") 1018-18010 3 (1700,600)
18 DESERT MOJAVE DESERT (34',55"; 117',55") 1018-18010 3 (150,600)
19 (BARE) MOUNTAINS SAN BERNARDINO, CA. (33',15"; 114',25") . 1015-17440 3 (1300,10)

20 CITY CHICAGO (41',50"; 87',40") 1017-16093 4 (1800,500)
21 GRASSLAND NEBRASKA (41', 0"; 101' ,05") 1007-16560 2 (5,50)
22 FOREST QUEBEC, CAN. (49', 0"; 72',20") 1025-15103 1 (500,610)
23 (RIVERS (IN FOREST) QUEBEC, CAN. (47',50"; 73',05") 1025-15103 1 (2095.150)

24 AGRICULTURE NORTH KANSAS (39',50"; 101',25") 1007-16560 2 (1800,500)
25 AGRICULTURE TEXAS/OKLA. (36',20"; 103',05") 1043-16573 1 (1000,100)

26 (VEGETATED) MOUNTAINS SOUTHERN CALIFORNIA. (34',15"; 117',45") 1018-18010 4 (1070,370)
27 AGRICULTURE ILLINOIS (41',50"; 88',40") 1017-16093 2 (1990,1)

28 (SNOW IN) MOUNTAINS LAKE TAHOE, CA. (38',35"; 119',55") 1128-18120 3 (1420,330)
29 FOREST WISCONSIN (43',15"; 88',36") 1017-16093 2 (50,50)

30 AGRICULTURE IMPERIAL VALLEY, CA. (32',45"; 115',30") 1015-17440 1 (2000,100)
31 PRINCIPLE FULL SCENE IMPERIAL VALLEY, CA. (33',40"; 114',35") 1015-17440 2 (880,1)
32 FOREST QUEBEC, CANADA (49',00"; 72',00") 1025-15103 2 (290,1)

33 MOUNTAINS SOUTHERN, CALIFORNIA (34',35"; 119',00") 1018-18010 1 (800,1)

34 DESERT MOJAVE DESERT (34' ,50"; 118' 05") 1018-18010 4 (4,1)



3.3 ERTS IMAGERY CHARACTERISTICS AND STATISTICS

3.3.1 Significance of Statistical Measurements Used

The performance of data compression algorithms such as the SSDI

and SHELL techniques used in this study is highly dependent on the

characteristics of the source data. The compression achieved on a scene is

proportional to the degree of spectral and spatial correlation existing in

the data. For this reason, knowledge of the statistics of the multispectral

scanner data is important.

Several data measurements were performed for all scenes evaluated.

Initially the mean and variance of the data are obtained for each spectral

band and subsequently averaged over.all bands. The mean intensity level of

each spectral band level is averaged over the scene to indicate the average

distribution of spectral energies in the scene. The variance of each band

corresponds to the degree of data activity within that spectral band as

averaged over the scene.

Neither the mean nor the variance are accurate indicators of the

compression that can be achieved for the scene, although a very low variance

indicates high compression and a very high variance naormially corres ponds toU c t sIII • I1' I ._' varimnnr nnrr~l

a low degree of compression. Since the compression algorithms are essentially

forms of differential pulse code modulation (DPCM), the effects of the

differing spectral means are eliminated. Since the algorithms are based only

on localized data activity it is possible for the intensity levels in each

band to vary greatly over different portions of the global scene, yielding

a large data variance, while varying slowly over local areas of the scene.

Thus, overall variance of the intensity within the spectral bands is only

a weak indicator of compression performance.

The cross-spectral-spatial correlation is a more accurate indicator

of the compression performance for a scene because it measures the localized

changes in the spectral information. Each ground picture element corresponds

to a four-dimensional intensity vector I constructed from the intensity values

of the four spectral components corresponding to that element. This vector

moves through the spectral subspace having a unique location for each ground

element. If the data activity is low in a given region, the vector movement
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is small between adjacent pixels and, conversely, the vector can undergo

large excursions between pixels in regions of high data activity.

For the algorithms used in this study, compression is not only

dependent on the magnitude and variability of the vectors from pixel

to pixel but on the type of the movement. If the vector direction remains

unchanged from pixel to pixel and only the magnitude varies, the compression

can remain high since this corresponds to a high spectral correlation

between pixels. Conversely, changes in vector direction with unchanged

magnitude corresponds to low spectral correlation and henceforth less

compression.

The cross spectral-spatial correlation was developed to correspond

to this dependence of the algorithm on the data activity. For each pair of

intensity vectors liand li+k in the scene, where k is spatial separation of

the elements, the normalized dot product is formed. Normalization removes

the effect of scene illumination and the effects of magnitude changes while

the dot product reflects the variation in vector direction between these

elements. The closer this normalized dot product to unity, the greater the

correlation between pairs and the better the expected performance of the

algorithms. The curves generated for each scene reflect the average cor-

relations obtained. The abscissas of the curves give the element spacing

in pixels, the ordinates represent normalized cross spectral-spatial corre-

lation, aok, and the curves give the percent of vector pairs in the scene which

have a correlation greater than ok for the spacing k.

The joint probability distribution function measures the joint occurrence

of first difference values over the scene. A four-dimensional difference

vector A is formed by subtracting each pixel intensity from the intensity of

the preceding pixel along the scan line. Vector A corresponds to the first

set of differences as obtained by the SSDI algorithm. Each difference vector

corresponds to a point in a four-dimensional space. By counting the occurrence

of these vectors over the scene and converting to a percentage occurrence,

the clustering of the differentials can be observed. The location and degree

of clustering of these difference vectors about the crigin (0,0,0,0) gives

another indication of achievable compression. Because a four-dimensional

plot cannot be performed, only the two-dimensional projections of the probability
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space is given and all() = 6 projections are printed by the computer. In

order to produce an intelligible output, the occurrence of all zero difference

values, the most probable occurrence, is normalized to the value 1CO and all

other probabilities are normalized to this value. Therefore, if the occurrence

of al +1 difference values is assigned the value 60, this means that

P(l,l)/P(O,O) = .6. If a joint occurrence of a set of differences 
occurs

less than 1% as often as does the joint occurrence of zeros, no value is

printed for that location in order to produce a clean display.

3.3.2 Results Obtained

This study produced well over 1000 pages of computer printout. A

complete set of output is given in Appendix B for the principal full scene.

This section summarizes the various statistical measurements obtained for the

thirty-four scenes by presenting results typical of the range of data generated,

including anomalous data.

Figure 3.3-1 gives the probability density of the data intensities

present in each band of the principal full scene (number 31). The means

an d variances of this data are:

Band 1 Band 2 Band 3 Band 4 Average

Mean 51.220 57.761 56.890 23.880 47.438

Variance 174.436 273.124 170.609 43.519 356.721

Note that the average variance is not the average of the variances in

each spectral band. This measure represents the overall variance of the data

in all spectral bands based on the average mean of the four bands. It is

normal for this variance to be greater than the variances of the individual

bands, as in the case above.

Note that the probability density function of the MSS data is not

continuous as might be expected in spectral bands 1, 2, and 3, and contains

intensity levels having much lower occurrence than adjacent levels. This

anomaly arises from the decompression algorithms used for ground processing

of the received data. The effect of this intensity mapping is quite evident

in the probabilities of levels 56 through 64 of band 2. The distribution of

intensities in band 4 (infrared) does not exhibit this peculiarity since no

mapping is performed for that band. This mapping has an adverse effect on
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8AND1 BAND2 BAND3 BAND4 BANOI BAND2 SAN03 BAND4
LEVEL , LEVEL

0 0.0000 0.0000 0.0000 0.0 00 64 1.7467 1.2592 0.0000 0.0000
I C.0000 0.0000 0.0000 0.0000 65 3.3257 1.6485 3.-587 a-0-00
2 C.0000 0.0000 0.0000 .0195 66 .8387 1.5455 W.97,07 0.0000
-3 .0002 0.0000 0.0000 .0800 • 67 ' 1.9222 2.1825 .0587 0.0000
4 0.0000 0.0000 0.0000 .1027 68 1.9792 e7192 3.5847 0.0000
5 C.0000 0.0000 0.0000 .0527.. 69 1.6735 1.4315 1.7360 0.0000
6 0.0000 0.0000 0.0000 .0637.. 70 1.8690 1.9160 .9345 0.0000

7 C.0000 0.0000 0.0000 .0997 71 1.9657 .8825 2.1955 0.0000
8 0.0000 0.0000 0.0000 .1777 72 .6480 1.3352 1.4980 0.0000

9 C.0000 0.0000 0.0000 .2677 73 .5537 1.1915 1.2115 0.0000
10 0.0000 0.0000 .0027 .4310 74 .6032 1.7340 1.7585 0.0000

11 0.0000 0.0000 .0120 .5760 75 .0867 1.8720 2.3132 0.0000
12 0.0000 0.0000 .0367 .7955 76 .1970 .4825 1.3025 0.0000
13 0.0000 .0012 .0602 1.0525 77 .0957 1.2097 1.7967

14 C.0000 .0150 .0395 1.4400 78 .0465 1.5847 2.2352 0.30..
15 0.0000 .0205 .0257 1.6867 .0475 1.0465 .6537 0QQ.
16 C.0000 .0185 .0435 2.9120 80 .0510 .5797 1.0955 0.0000

17 C.0000 .0357 .0352 3.7430 81 .0355 1.5997 1.8957 0.0000
18 C.0000 .0720 .0420 5.0185 82 .0265 .5807 .2700 0.0000

19 0.0000 .0977 .0365 6.1420 83 .0460 1.1727 .6600 0.0000

20 0.0000 .1367 .0250 6.4765 84 .0187 1.6642 .3750 0.0000

21 .0002 .3152 .0712 6.2447 85 .0247 .4107 .1182 0.0000

22 .0075 .1425 .0927 5.7335 86 .0062 1.3052 .1462 0.0000

23 .0250 .9715 .0555 4.7267 87 .0457 1.2400 .1112 0.0000

24 .0537 1.1967 .1542 5.9690 88 .0022 .4265 .0435 0.0000

25 .0762 .6345 .1802 4.9340 89 .0192 .8260 .0532 0.0000

26 .0815 .6165 .0790 4.9672 90 .0235 1.2587 .0440 0.0000

27 .0600 .5717 .2727 4.8477 91 .0097 .2307 .0272 0.0000

28 .2640 .6102 .1962 4.6322 92 .0167 .5285 .0352 0.0000

29 .2972 .9897 .4035 4.8322 93 .0060 .5402 .0242 0.0000

30 .2102 .7240 .4060 4.9772 94 .0165 .1142 .0085 0.0000

31 .6637 .8005 .2032 4.1320 95 .0012 .L112 .0270 0.0000

32 1.6167 .4475 .4755 3.6611 .96 .0122 .0802 .0112 0.0000

33 .9Q60 .9032 .2535 2.0167 *97 .0082 .0275 .0047 0.0000

34 1.8085 .5222 .6092 1.2280 98 .0072 .0355 .0120 0.0000

-35 1.9405 .5192 .3085 860Z- 99 .0047 .0240 .0075 0.0000

36 1.5612 . 1.0210 .8130 .6937 100 .0060 .0042 .0035 0.0000

_U 3 2.8132 .4417 .3152 A [VA "101 .0020 .0155 .0065 0.0000
38 1.5137 1.3000 1.1625 .5562I 102 .0022 .0215 .0035 0.0000

39 2.1930 .2922 .5320 .5105 103 .0060 0.0000 .0040 0. QQ.
40 2.5570 1.5357 1.2522 .4767 104 .0015 .0045 .0047 0.0000

41 1.9010 1.5790 1.0105 .4137 105 .0010 .0212 .0025 0.0000
42 3.1440 .9380 2.0887 .3650 106 .0015 0.0000 .0017 0.0000
43 2.1617 1.3037 2.1877 .3307 107 .0017 .0030 .0002 0.0000

44 4.2600 1.0677 1.6450 .3027 108 0.0000 .0027 .0015 0.0000

45 2.2107 1.4832 2.2867 .2460 109 .0012 .0067 .0005 0.0000

46 3.8215 1.3255 2.9222 .2080 110 .0005 .0037 .0007 0.0000

47 4.2705 1.7122 1.9735 .1472 111 .0005 .0030 .0007 0.0000

48 2.6060 1.9722 3.5762 .0882 112 .0005 .0025 0.0000 0.0000

49 4.7780 1.3870 2.1565 .0512 113 .0002 .0015 .0010 0.0000

50 1.2317 3.1187 2.9935 .0295 114 0.0000 .0010 0.0000 0.0000

51 4.3165 1.7247 3.4140 .0202 115 .0012 .0020 0.0000 0.0000

52 3.2300 2.9577 2.5920 .0132 116 0.0000 0.0000 .0002 0.0000

53 3.9825 2.8107 4.1755 .0085 117 C.0000 .0020 0.0000 0.0000

54 2.3770 3.1760 .0537 .0030 118 0.0000 .0002 .0005 0.0000

55 3.1960 3.1520 4.6037 .6010 119 .0002 .~000 ,0002 0.0000

56 1.4120 3.8102 2.3690 0.0000 1O 0.0000. .0002 .0000 0.0000
57 2.0375 6.4202 3.8682 0.0000 I121 0.000 .0010 .0002 A0W.
58 2.3045 .7627 3.0022 0.0000 122 0.0000 0.0000 .0007 0.0000
59 1.5855 1.4105 .8360 0.0000 123 .0002 .0005 0.0000 0.0000

60 3.2720 .7652. 3.4582 0.0000 124 0.0000 .0002 0.0000 0.0000

61 1.5070 3.2942 2.1807 0.0000 125 0.0000 0.0000 0.0000 0.0000

62 2.5765 .7947 4.1015 0.0000 126 .0005 .0005 0.0000 0.0000

63 1.0690 3.1830 2.0962 0.0000 127 00000 .0005 0.0000 0.0000

Figure 3.3-1. Probability of Occurrence of Intensity Levels in Each Band of
Principal Full Scene (31)
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the SSDI algorithms which are based on differences between successive

intensity levels and the mapping algorithm introduces another source of

noise into the data. The SSDIA and the SSDIAM algorithms tend to smooth

these fluctuations due to the averaging operations in the SSDIA and the

remapping ability of the SSDIAM.

Figures 3.3-2 and 3.3-3 show the probability density of the data

intensities for scene 28. Figure 3.3-2 is based on data received from

the spacecraft while Figure 3.3-3 is based on the data after ground processing.

The effect of the ground mapping algorithms is evident in a comparison of

these two figures.

A second anomaly present in several of the subscenes processed is

due to the presence of a bad sensor-in band 2 (MSS-5). This defect produces

abnormally low intensity values on every sixth scan line of data in band 2.

Figure 3.3-4 gives a segment of input data which clearly illustrates the

occurrence beginning on the fourth scan line shown and recurring every sixth

line. The effect of this anomalous data on the compression algorithms will

be discussed further in Section 3.4.2.

Figures 3.3-5 through 3.3-8 show several plots of cross spectral-

spatil c rrelnation for onraced scenes. Figures 3.3-5 is from scene number

4 (ocean) and shows highly correlated data since the spectral vector undergoes

only minor changes in direction over the scene. As expected from such a high

degree of correlation, a very low compressed bit rate was produced for this

scene. Figure 3.3-6, from scene number 22 (forest) illustrates a low degree

of correlation implying a large average change in vector direction for even

closely spaced pixels. Figures 3.3-7 and 3.3-8 give the 95% correlation

curves for several additional object classes.

Similarly, Figures 3.3-9 through 3.3-11 show several joint probability

distributions of first difference as obtained by the SSDI algorithm to

illustrate several types of clustering which occurred. Figure 3.3-9

illustrates a high degree of clustering of joint differences about (0,0)

in spectral bands 1 and 2, based on scene 4 (ocear). Figure 3.3-10

illustrates a wide spread of differences as produced by scene 23

having higher data activity. Figure 3.3-11 shows an intermediate case

from scene 29.
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37 . 4.5889 1.9780 9.3774 .0172
38 2.2910 1.9814 5.4420 .0241

BAND1 BAND2 BAND3 BAN04 39 2.3873 1.6202 8.5587 0.0000

LEV L 40 4.7162 1.7165 3.4950 .0034
1 1.0458 -0870 7.. 5507 0.0000

0 C.0000 0.0000 0.0000 0.0000 42 1.5686 2.7382 1.9814 0.0000

1 0.0000 0.0000 0.0000 0.0000 43 1.6477 2.0089 6.7630 0.0000

2 0.0000 0..0000 0. UDO 0 0.0000 44 .6777 1.33T3 3. 0.0000

3 0.0000 0.0000 0.0000 0.0000 45 .9735 1.2900 2.4355 0.0000

4 0.0000 0.0000 0.0000 .0482 46 .05859 1.0114 3.3196 0.0000

5 . O000 .G 0.-0000 .. O-Uf - ;U4I3 47 . .7258 .433 1.2865 0.0000
6 0.0000 0.0000 0.0000 .0172 48 .3715 1.0939 3.2680 0.0000

7 0.0000 0.0000 0.0000 .0103 44 .3165 .5091 .9322 0.0000

8 0.0000 0.O000 0.0000 - -.0138 0 -3 - .4-6 7 1.9229 0.0000

9 0.0000 0.0000 0.0000 .0138 51 .2442 .6880 .9735 0.0000

10 0.0000 0.0000 0.0000 0.0000 52 .1514 .2270 1.3588 0.0000

-IT- 0;. U- ;000.....- 000 .3T- 5 .. .4919 28Z21 0.0000
12 0.0000 0.0000 .0103 .0722 54 .0688 .1995 1.1352 0.0000

13 0.0000 0.0000 .0482 .2202 9S .0310 .2236 .1823 0.0000

S14 - 0,000D .U06. -. 20-6 . 9460 .051-6 .-307 .200 .U.UU00

15 0.0000 0.0000 .0069 1.9917 57 .0206 .1582 .7190 0.0000

16 0.0000 .0275 .0069 6.3330 58 .0241 .2649 0.0000 0.0000

.7 . C... OU . .03 . T . 9.6732 . .0241 .T5 .5745 0.0000
18 0.0000 .23A9 .0069 11.7165 60 .0172 .0998 .1204 0.0000

1Q 0.0000 1.0870 .0034 13.0478 61 0.0000 .0310 .1479 0.0000

20 . 0.0000 -2.1156 .- TI-03 .552 62 ...... 2... T 1388 ".OuuO

21 0.0000 4.0213 .0103 12.1465 63 0.0000 .1066 .0929 0.0000

22 .0172 3.3196 .0034 9.9140 64 .0034 .1101 .2580 0.0000

-07T..... -- .-. ;0 103 . 6. .0034 . 1238 . u4z U.uuu
24 .3337 8.1493 .0172 5.4008 66 .0034 .0516 .0138 0.0000

25 2.9309 10.0378 .0310 3.0100 6? .0034 .0069 .1720 0.0000

2.8070 5T89 . . -0550 Y.. 9 2 t 6i 0. o078 .2.. 02 0.0000

27 6.0028 .9563 .1342 1.1799 69 0.0000 .1032 .0103 0.0000

28 8.0323 8.9783 .5607 .7671 70 0.0000 0.0000 .0757 0.0000
, ..856. 3 . .- .664 . T.oooo .20 .275 0.0000

30 15.4283 7.3203 2.3667 .4334 72 0.0000 .0413 .0103 0.0000
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Figure 3.3-2. Probability of Occurrence of Intensity Levels of 
Each Band of Scene 28

(Spacecraft Data)
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Figure 3.3-3. Probability of Occurrence of Intensity Levels in Each Band of Scene 28
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Figure 3.3-4. A Segment of Input Data from Scene 8 (Band 2)
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An estimate of the total system noise energy was made based on three

uniform subscenes. While the figures are necessarily an upper bound on the

sum of sensor, quantization, and de-compression noises, they serve to

approximate the minimum data activity produced the the ERTS system. Table

3.2 lists the variances obtained for each spectral band based on the

selected subscenes:

Table 3.2. Estimated System Noise Energy

Scene 1 Scene 3 Scene 4

Band 1 .326 .964 .924

Band 2 .343 .576 .780

Band 3 1.350 .666 .579

Band 4 .844 .304 .332

The noise component produced by the scanner mechanism is a function

of light intensity and scenes 3 and 4 are based on water which produces low

incident light levels whereas scene 1 is based on cloud cover which entails

a high intensity level. No estimates were taken for scenes of intermediate

intensity since the data activity in such areas is much greater than the

system noise level.

3.4 DATA COMPRESSION CHARACTERISTICS AND STATISTICS

3.4.1 Significance of the Compression Statistics Measured

For each subscene and full scene processed, several key statistics

and global measures of the data compression performance were obtained.

These measurements serve as an indicator of the compression to be expected

on similar subscenes containing the same object class and permit an evaluation

of the efficacy of each compression technique for similar data.

The probability distribution of the symbols obtained by each algorithm

indicates the level of performance to be expected when using that algorithm

on the data. The greater the clustering of these symbols about zerob the
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the higher the compression when the symbols are encoded for the Rice or

Huffman techniques. For most data, the variance of the data decreases

progressing from the SSDI to the SSDIA and from the SSDIA to the SSDIAM

algorithms. For anomalous data, such as that obtained with a defective

sensor, this may not be the case. The entropy of the symbol distribution

is also computed for each algorithm since the entropy forms a lower bound to

the average compressed bit rate.

Based on this symbol distribution, the computer generates the

Huffman code for each technique. Since the symbol statistics are measured

globally for the entire scene, this code would be used for non-adaptively

encoding that scene. The grouped Huffman code, as described in Section 2.2.3

is used in order to simulate a technique which has shown high promise for

ground data compression usage. The codeword assigned to each symbol is

printed together with the grouped codeword prefix beside those symbols which

form the grouping. In addition, the number of bits in the codeword for each

symbol, the total probability of symbols in the grouping, and the average

compressed bit rate for the scene are displayed. The Huffman coding efficiency

for each technique can be obtained by comparing the average bit rate with

the symbol entropy. In addition to obtaining the global Huffman average bit

rate for the scene based on each technique, the average bit rate is computed

for the scene based on use of the adaptive Huffman or Rice algorithms for the

encoding of either the SSDI or SSDIA symbols. Since the adaptive Huffman

technique generates a new Huffman code for each block of data, no output of

these codewords is practical.

The percentage occurrence of the three Rice modes (FS, CFS, CFS) are

printed as are the percentage occurrence of the split-pixel modes. The

percentage of Rice modes which occur are dependent on the overall data

activity within the scene as well as on local variations of data activity

within the scene. Thus, even a scene which has an overall high data activity

normally has some subregions with moderate or low activity. The split-pixel

modes only occur when the data activity in a block produces an average bit

rate greater than 4 bits/sample.

The time-varying data compression of the scene is also printed for the

global Huffman, adaptive Huffman, and Rice codes as the average bit rate per

3-20



scan line. These varying bit rates fluctuate corresponding to the
average data activity in each scan line. Trends of data activity and

the effects of sensor or system anomalies can be discerned by observing

these statistics. In addition, the performance of the three techniques

are compared on a line-by-line basis as well as by judging the overall
compressed bit rate of each technique. While one of the three techniques

will produce the lowest bit rate on most scan lines of a given scene there

will be some lines in which a lower rate is produced by a competing

technique.

The buffer statistics are computed for the selected SSDI mode with
Rice encoding for the two fixed-rate buffer outputs of 3.0 and 3.5 bits
per sample. These rates were selected since they correspond to an average

fixed-rate compression of 2:1 or more and they bound intermediate buffer

output rates. The values printed for each scan line represent the total

accumulated number of bits in the buffer at the end of the scan line, assuming
zero buffer bits at the start of the first scan line. The buffer total in-

creases when the average input bit rate for the scan line surpasses the fixed

output rate and the total decreases when the average input bit rate is less
than the output bit rate. Buffer underflow is printed as zero bits. These

buffer statistics are primarily a consideration for compression performed

aboard a spacecraft where the tradeoff of transmitted data rate versus buffer

capacity must be considered.

3.4.2 Results Obtained

The overall data compression achieved on each scene processed is

summarized in Table 3.3 for all the compression techniques used. The first

column contains the scene identification number, correlated with Table 3.1.

Columns six through nine give the average bit rate achieved on the scene by

the Shell, SSDI, SSDIA, and SSDIAM (shown for single-level mapping, Iml = 1)

algorithms followed by global Huffman coding. Columns two and three give the

average bit rate for the scene as produced by the adaptive Huffman and Rice

algorithms for symbols generated by either the SSDI or SSDIA (see column 5).

Column 4 gives the peak buffer fill (in bits) generated by the scene for an

output buffer rate of 3.5 bits per input intensity sample. Table 3.3 permits

the determination of the expected bit rate that can be achieved on the various

object classes using the different algorithms. The bit rate produced varies

from a low of 1.220 bits to a high of 3.821 bits.
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Table 3.3. Compressed Bit Rates of Scenes Processed

ADAPTIVE ALGOR I THMS GLOBAL HUFFMAN

SCENE PEAK BUFFER

NUMBER HUFFMAN RICE FILL (BITS) SYMBOLS SHELL SSDI SSDIA SSDIAM

1 1.42 1.31 0 SSDI 1.697 1.508 1.491 1.427

2 1.45 1.22 0 SSDIA 1.912 1.920 1.458 1.380

3 1.49 1.27 0 SSDIA 2.037 2.123 1.532 1.485

4 1.53 1.37 0 SSDIA 2.162 1.953 1.618 1.461

5 1.59 1.73 0 SSDIA 1.711 1.687 1.934 1.887

6 1.78 1.79 0 SSDIA 2.014 2.135 1.890 1.453

7 2.39 2.41 0 SSDIA 2.386 2.377 2.478 2.182

8 2.46 2.66 28,493 SSDI 2.842 2.784 3.089 2.648

9 2.47 2.48 0 SSDIA 2.945 2.750 2.521 2.069

10 2.61 2.58 0 SSDIA 3.043 3.156 2.762 2.285

11 2.55 2.67 22,328 SSDI 2.827 2.790 3.251 2.724

12 2.64 2.67 1,134 SSDIA 2.956 3.106 2.861 2.559

13 2.71 2.85 141 SSDIA 3.160 2.883 3.106 2.693

14 2.81 2.76 0 SSDIA 3.233 3.268 3.096 2.655

15 2.89 2.48 19,415 SSDIA 3.135 3.374 2.264 2.767

16 2.91 2.99 1,227 SSDIA 2.915 2.759 3.351 2.956

17 3.01 2.98 0 SSDIA 3.322 3.399 3.129 2.522

18 3.07 3.02 2,411 SSDIA 3.206 3.097 3.167 2.558

19 3.11 3.04 0 SSDIA 3.438 3.447 3.185 2.541

20 3.12 3.21 1,862 SSDI 3.436 3.346 3.556 2.939

21 3.12 3.19 9,801 SSDI 3.349 3.435 3.433 3.064

22 3.18 3.21 3,053 SSDI 3.374 3.394 3.408 2.877

23 3.26 3.28 1,213 SSDIA 3.644 3.467 3.452 3.034

24 3.32 3.35 3,670 SSDI 3.581 3.536 3.487 2.981

25 3.36 3.38 88,775 SSDIA 3.407 3.283 3.667 3.272

26 3.37 3.35 3,091 SSDI 3.526 3.650 3.355 2.824

27 3.39 3.40. 3,355 SSDIA 3.816 3.699 3.559 2.935

28 3.45 3.44 5,734 SSDI 3.654 3.698 3.533 2.907

29 3.48 3.47 3,872 SSDIA 3.512 3.479 3.651 3.064

30 3.56 3.54 9,815 SSDIA 3.757 3.747 3.660 2.981

31 3.47 3.59 168,599 SSDI 3.739 3.686 3.676 3.046

32 2.93 3.00 6,649 SSDIA 3.239 3.339 3.323 2.966

33 3.52 3.53 168,450 SSDIA 3.715 3.821 3.633 3.025

34 2.68 3.04 0 SSDI 3.091 3.044 3.261 2.827



In general, the Shell and SSDI algorithms gave comparable compressed

bit rates as did the adaptive Huffman and Rice techniques. For all scenes

the SSDIAM produced a lower bit rate than the SSDIA. The difference in bit

rates produced between the SSDI and SSDIA algorithm varies. For well-

behaved data the SSDIA produces a lower bit rate than the SSDI but the

reverse occurs for data in which the band 2 sensor generates anomalous data.

This situation results from the averaging operation performed which includes

intensities from a scan line of correct data and intensities from the scan

line containing bad data. This produces large first differences within

spectral band 2 and second differences which are not correlated with either

band 1 or band 3. This effect produces disturbances in the SSDIA extending

over 2 scan lines of compressed data. Each time a defective scan line occurs

resulting in poor compression for one third of the scene. This averaging

operation is also performed for the SSDIAM to produce a high compressed bit

rate for such anomalous data. This effect is evident from the time-varying

compressed bit rate shown in Figure 3.4-1.

The effect of such data anomalies is less severe for the SSDI

algorithm but some degree of degradation is still produced with the severity

depending on the form of source coding which is used for the SSDI symbol.

The global Huffman code becomes less efficient because one sixth of the

scan lines (those containing anomalous data) produce symbol statistics

quite different than the statistics for the other lines. The Huffman code

generated based on the symbol statistics for the entire scene is neither

optimal for the normal data nor for the anomalous data symbols. This same

variation in line symbol statistics corrupts one third of the scan lines

when using the adaptive Huffman code which uses the statistics developed

for the symbols on one scan line for encoding symbols from the next line

of data, a process which requires a fairly high correlation of symbol

statistics from line-to-line to be effective. The Rice technique normally

performs better than the global or adaptive Huffman methods for such data

since it generates a code based solely on the statistics of a block of

symbols contained within a single scan line. This ability to rapidly adjust

to changing statistics is advantageous for segments of defective data.
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Figure 3.4-1: Global Huffman Code for Shell Symbols, Scene 3

Appendix B contains a complete set of computer output for the principal

full scene, and contains the global Huffman code generated for the Shell,

SSDI, SSDIA, and SSDIAM symbols. Figures 3.4-1 through 3.4-3 present

global Huffman codes which illustrate typical forms such codes can assume.

Figure 3.4-1 shows the Huffman code generated coding for the Shell symbols of

scene 3, where shell 1 corresponds to the inner shell with maximum level of
2

zero. The x2-distribution peaks at-the second shell, and no levels are

occupied beyond the fifth.
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Figure 3.4-3. Global Huffman Code for SSDIAM

Symbols, Scene 3
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Figure 3.4-2 presents a typical SSDI global Huffman code for a source

symbol distribution based on data having a moderately high activity. The
first column gives the symbol level, (only symbols between -20 and +20 are
shown since symbols outside this range are always in the lumped group.)
The second column gives the probability of occurrence of that symbol, the
third column gives the number of bits in the symbol codeword, and the last

column gives the actual codeword generated. Symbols having an asterisk by
the length indicate that the symbol forms a part of the lumped grouping.
In this example, the lumped codeword prefix is 1100, of length four bits.

The total probability of symbols included in the lumped grouping is .033

for this example. The average codeword length for this scene is 3.106
bits/sample and the symbol entropy is 2.951 bits/sample.

The global Huffman code for the SSDIAM symbols generated for scene
3 is shown in Figure 3.4-3. This code is typical of those generated for

data having a low source activity and only three symbols, of total probabi-

lity is .994, are encoded directly with the remainder falling in the lumped

group with prefix codeword 110. Since no Huffman codeword contains less
than one bit, the ratio of the average codeword length to the symbol entropy

increases as the entropy decreases. This is evident in Figures 3.4-2 and

3.4-3 where the respective ratios are 1.053 and 1.2.

Figures 3.4-4 and 3.4-5 contain segments of time-varying compression

and buffer statistics for scenes of high and low data activity. These two
figures convey a great deal of information regarding data characteristics and

permit comparisons of the performance and limitations of the various

algorithms. The first column of Figure 3.4-4 gives the scan line numbers

(from the beginning of the subscene), columns 2 and 3 gives the buffer

fill (in bits) at the end of each scan line based on fixed output rates

of 3.0 and 3.5 bits/sample; columns 4 though 6 give the average bit rate

for that line based on the global Huffman, adaptive Huffman, and the Rice

algorithms respectively. For this Figure, SSDI symbols are used and the

buffer statistics are based on the global Huffman outputof scene 12.

Several observations can be made concerning Figure 3.4-4. First,

the source data activity increases from line 36 to about line 61 and

then begins to decrease. As the average bit rate per line for column 4
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increases above the buffer output rates, the buffer fill increases until

the rates of column 4 fall below the buffer rates. The peak buffer fill

for an output rate of 3 bits occurs on line 67 while the peak buffer fill

for an output rate of 3.5 bits occurs on line 62.

Average Bits/Sample

Scan Line Buffer Bits--"t
Number 3.0 3.5 Huffman Huffman Rice
- - , a - -1.9qo . 50 - 8i0

37 0 0 1.851 1.815 1.640
38 0 0 ?.395 2.231 2.003
39 0 0 2.019 2.167 2.007
40 0 0 1.975, 1.954 1.966
41 0 0 2.257 2.068 23.11
42 0 0 1.711 1.710 1.427
43 0 0 1.879 1.739 1.738
44 0 0 -1.982 1.906 1.728
45 0 0 1.768 1.7?9 1.628
46 0 1.805 1.650 .1.688
47 0 0 1.970 1.769 2.024
48 0 0 1.751 1.817 1.353
49 0 0 2.152 1.970 2.122
50 0 0 2.606 2.84 2.446
51 0 0 2.421 2.443 2.336
52 0 .0 2.522 2.*48 2.798

53 0 0 2.997 2.979 3.442
54 0 0 2.921 3.443 3.310
S 130 0 . 193 3. 461 3.302
56 561 95 3.641 3.834 4.125
57 1022 220 i.686. 3.659 4.275
58 1404 266 3.568 3.943 3.790
59 1981 507 3.859 4.210 4.571
60 2441 633 3.688 3.982 4.253
61 2992 846 3.817 3.8?3 5.446
e2 3938 1C56 3.813 3.943 4.039
63 3862 '044 3.482 3.749 4.336
64 4288 1134 .3.634 3*780 3*736
65 4041 551 2.632 2.710 2.304
66 4402 576 3.537 3.519 3.847
67 4501 339 .3.147 3.345 3.262
68 4420 0 2.879 3.006 2.884
69 4208 0 2.685 2.863 2. 655
70 3712 o 2.262 2.375 2.205
71 3255 0 2.320 2.342 2.158
72 2894 0 2.463 2.243 2.339
73 2142 0 1.881 1.996 1.69q?
74 1354 0 1.827 1.766 1.625
75 787 0 2.156 2.179 1.830
76 0 0 1.732 1. 701 1.16
I 0 0 2.086 1.933 1.981

Figure 3.4-4. Time-Varying Compression Statistics, Scene 12
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Buffer Bits Global Adaptive
Scan Line R = 3.0 Huffman Huffman Rice
Number OUT

?6 o__0 1.347 1.781 _ 129
S0 1.5t 1.494 1.644

0 ?,o64 .' 6. 1.676

?S 0 1,.5 80 .80 .?50

40 0 1.315 1.443 1.257

41 0 1.I.? 1.582 1.250
42 0 1.3 6 1.408 1 .246

4? I r86 i8.50q 1.673

-4 U .606 1.606 1.652

45 0 .'.? 1..42 1.092

4( ( 1.347 1.42- 1.244
47 0 1.156 1.586 1.237
4E 8 1285 1.405 - 1.2r9
tsc 0 '.77' .68? '.845

• c U I .244 13Q=,5
5C 0 .. •. 44 1. 0
r_ _0 1.430 1.406 1.049

S0 1.510 1.808 1.600
0 1.467 1.467 1.054

-r4 u '.377 - . .375 1.158
=: ' 3 .3iR 1.70P

0 ' .3' 1.506 1.42?

57 0 '.4'7 1.417 1.04A

U 0 1.445 1,530 1.467

5 :0 :.475 1.448 1.088

0 0 1 .3'? '.405 1.223
41 0 1'. .117 1.740

2 1 '.0' 1.756 .7.

2 .? 1. 2 z 2 1.182

S0 1.281 1.238 .856
S0 1.2?q 1.?65 .945

66 0 .329. 1.384 1.205

'-7 0 '.9 1f 8 1.753

48 0 .. )lP 14h1.13

13 0 1.1?6 X. 69 . . 1.106

'0 0 1.330 1.265 .912

'1 0 i.?81 1.266 .956

'2 0 1. 20 '.366 1.1t5

0 '.760 3.69P 1.6q93

1. 14F4 i.66? 1. f. 1

0 .'48 1*349 1.040

7L 0 1.411 1.296 1.003

7, 0 ' .4E 1.141 1.243

Figure 3.4-5. Time-Varying Compression Statistics, Scene 3

On lines of lower data activity the Rice algorithm normally 
yields

the lowest average bit rate. One reason for this is that the Rice al-

gorithm can produce a bit rate as low as .37 bits/sample while the Huffman

codes can never be less than 1 bit/sample. As the average bit rate increases

the Huffman codes can perform better than the Rice in some 
cases since they

do not require the transmission of overhead bits for 
each block of data.
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Another limitation of the Rice algorithm, as simulated here, is the use of

fixed codes for the fundamental sequence and these fixed codes are not

optimal for all blocks. The performance of the global Huffman code depends

on how well the symbol statistics of a scan line match the symbol statistics

developed for the entire scene and the performance of the adaptive Huffman

code is dependent on the correspond of the symbol statistics of the line

being encoded with the symbol statistics of the preceding line. Therefore,

while the adaptive algorithms yield performance superior to the fixed Huffman

algorithm for the entire scene, this is not necessarily true on the basis of

any individual scan line. As an example, the global Huffman is best for

line 52, the adaptive Huffman is best for line 41, and the Rice technique is

best for line 36.

Figure 3.4-5 portrays similar time-varying statistics based on

SSDIA symbols for a segment of data from scene 3 having low source activity.

This scene also differs from the preceding in that the data contains

anomalous sensor output on every sixth scan line. The effect of this

sensor defect disturbs the various algorithms in differing degrees as

can be observed in the performance shown in the figure. Since the Rice

algni+hm encodes eacrc h lin nseparately, the increased hit rates on lines

37, 38, 43, 44, etc., reflect the disturbance of the SSDIA symbols

themselves. Since the adaptive Huffman algorithm uses the statistics of

symbols in one line for encoding the next line, the anomalous data produces

effects that propogate further. The global Huffman is an intermediate case

since each line is encoded based on the code developed for the entire scene.

This global code is affected by the defective sensor data statistics and

produces a code which generates a higher bit rate for all scan lines.

Figure 3.4-5 also shows lines for which the Rice algorithm produces average

bit rates of less than one bit/sample including overhead bits.

Figures 3.4-6 through 3.4-9 show buffer statistics for two scenes

based on the SSDIA/Rice algorithm. Figures 3.4-6 and 3.4-7 are based on

scene 15 which is centered on Catalina Island and extends into the Pacific

ocean on either side. This scene produces an average bit rate of 2.89 bits.

Figure 3.4-6, based on a buffer output rate of 3.5 bits, shows buffer under-

flow until scan line 48 , at which point the average compressed bit rate

exceeds 3,5 bits per line. The bit rate per line begins to fall below the

buffer output rate around scan line 107 at which point the buffer fill

decreases.
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Compression Technique Used - SSDIA/Rice

20K Average Compressed Data Rate - 2.89 bits/pixel

Buffer Output Rate - 3.5 bits/pixel

5,

5..
m 10K

0 I

0 20 40 60 80 100 120 140 160

SCAN LINE NUMBER IN SUBSCENE

Figure 3.4-6. Buffer Statistics of Scene 15 (Catalina Island)

40K Compression Technique Used - SSDIA/Rice

Average Compressed Data Rate - 2.89 bits/pixel

Buffer Output Rate - 3.0 bits/pixel

S30K-

S20K.

10K _

0 20 40 60 80 100 120 140 160
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Figure 3.4-7. Buffer Statistics of Scene 15 (Catalina Island)
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1200 Compression Technique Used - SSDIA/Rice

Average Compressed Data Rate - 3.28 bits/pixel

Buffer Output Rate - 3.5 bits/pixel
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Figure 3.4-8. Buffer Statistics of Scene 23 (Saguenay River)

30K

Compression Technique Used - SSDIA/RiCe

Average Compressed Data Rate - 3.28 bits/pixel

Buffer Output Rate - 3.0 bits/pixel
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Figure 3.4-9. Buffer Statistics of Scene 23 (Saguenay River)
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Figure 3.4-7, based on a buffer output rate of 3 bits, illustrates

the same effect except that buffer fill begins around scan line 29 where

the compressed bit rate exceeds 3 bits/line and peaks at scan line 110.

For an output buffer rate of 3 bits the peak buffer fi-ll is 43,632 bits

and for an output buffer rate of 3.5 bits the peak buffer fill is 19,415 bits.

Figures 3.4-8 and 3.4-9 are based on scene 23 which contains sensor

data anomalies in spectral band 2. This scene produces an average compressed

data rate of 3.28 bits. Figure 3.4-8 dramatically illustrates the effects

produced by the defective sensor in band 2 as peaks in the buffer fill

occurring every sixth scan line. If the sensor defect were not present

the average compressed rate would be around 2.85 bits, well below the

buffer output rate. Due to this defect the peak compressed data rate

exceeds 4 bits on many of the affected scan lines. The peak buffer fill

is 1213 bits. Figure 3.4-9 illustrates the use of a buffer with output

rate (3 bits) below the average compressed data rate. The buffer fill

continues until it reaches 32,003 bits at the end of the scene. The effect

of the sensor anomaly is also evident in Figure 3.4-9 as peaks and valleys

superimposed on the buffer statistics.

The Rice algorithm uses a fixed block size of 16 pixels (64 symbols)

along a scan line for all scenes processed. This block size was determined

early in the investigation by processing segments of three subscenes

(numbers 3, 10, and 20) with varying block sizes. The results are given

in Figure 3.4-10. While the performance of the Rice algorithm is dependent

on the block size used, and ideally this parameter should be adaptive, com-

pression is only weakly dependent on block size over the range 
of twelve to

twenty pixels per block. As the block size decreases below this range the

contribution of the overhead bits becomes a significant percentage of the

overall bit rate. If the block length is too large, the symbol statistics

can vary significantly over the block and degrade the compression 
achieved.

The block size of 16 pixels was selected as a compromise between these two

conflicting requirements and it is felt that any degradation that 
results

fom this choice is not severe.
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Figure 3.4-10. Performance of Rice Algorithm with
Variation of Block Size

Table 3.4 shows the precentage distribution of Rice modes for

several scene processed, reflecting the data activity within that scene.

For scenes having low data entropy, mode CFS predominates; for scenes having
moderate data activity, mode FS predominates; and for scenes of high data

activity mode CFS predominates. The only split-pixel mode which appeared

in the scenes processed is the (6,1) mode. This is to be expected since

the other split-pixel modes appear only when the symbol entropy exceeds

five bits.

Table 3.4. Percentage Distribution of Rice and Split-Pixel Modes
for Selected Scenes with Varying Data Activity

SCENE No. FS CFS CF SP(6,1)

1 35.6 3.2 61.2 -

3 37.1 - 62.9 -

13 36.5 63.5 "

15 19.8 48.0 32.2 20.7

24 16.0 84.0 - -

28 7.3 92.5 .1 -

31 10.4 89.6 - .2

33 9.1 90.8 .1 8.2

3-34



3.5 COMPARISON OF SPACECRAFT AND GROUND PROCESSED DATA

Scene number 28, containing mountains, was run using both MSS tapes

before and after ground processing. The former tape contains data

generated directly by the spacecraft and permits a comparison of the

data statistics and compression algorithm performance with the ground pro-

cessed tapes which were used throughout the study.

The means of the data differ slightly and are:

Band 1 Band 2 Band 3 Band 4 Average

Spacecraft 32.86 31.00 39.74 20.27 30.97

Ground 34.96 33.50 38.81 19.28 31.64

This difference is due to the decompression performed on the ground.

Figure 3.5-1 contrasts the cross spectral-spatial correlations of the two

forms of data and shows a higher correlation for the spacecraft data.

Figures 3.5-2 and 3.5-3 show corresponding plots of the joint probability

function of first differences from bands 3 and 4, illustrating a somewhat

closer clustering of differences about the origin.

Kt

95% (5)
95% (G)
99% (S)

99% (G)

.9

.8

I I I I I

0 2 4 6 8 K-

Figure 3.5-1. Spectral-Spacial Correlation of
Scene 28 Based on Spacecraft (S)
and Ground-Processed (G) Data
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Figure 3.5-2. Joint Probability Density of Band 3 and Band 4, Scene 28 (Spacecraft Data)
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The most interesting comparison is based on the compressed bit

rate achieved by each algorithm on the two forms of MSS data:

Spacecraft Data Ground Processed Data

SHELL 3.512 3.654
SSDI 3.566 3.698
SSDIA 3.448 3.533
SSDIAM 2.927 2.907

SSDI/Adaptive Huff. 3.33 3.45
SSDI/Rice 3.32 3.44

The compression achieved for.spacecraft data was higher for all

techniques except for the SSDIAM. While the discrepancy for SSDIAM

processing is not fully understood, the improvement achieved with ground

processed tapes may result from the compensating interaction between the

SSDIAM intensity mapping and the intensity mapping performed during ground

processing. The buffering statistics are correlated with the difference

in compressed bit rates for the two forms of data, with peak buffer fill

tabulated below.

Output Buffer Rate Spacecraft Data Ground Processed Data

3.0O 36,820 49,875
3.5 4,188 5,734

3.6 RECONSTRUCTED IMAGERY

Four full scenes were compressed and reconstructed using a variety

of strictly information preserving algorithms and the Principal Full.Scene

(PFS), number 31, was compressed and reconstructed to evaluate the effects

of channel errors and essentially infomration preserving distortion on the

reconstructed imagery. Photographs P1 through P17, contained in Appendix A,

were generated from the reconstructed data.

The photographic imagery was reconstructed from tapes formatted as

shown in Figure 2.4-5. Several precautions were taken to insure uniformity
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of film and print processing. All four spectral bands of a given full

scene were placed on the same film negative and developed simultaneously.

All prints were developed at the same time as were the enlargements of

individual spectral bands to prevent gross variations in contrast and to

insure a uniform enlarging size.

Photographs P1 through P4 give the four spectral bands of the four

full scenes compressed and reconstructed using various combinations of

strictly information preserving algorithms evaluated in this investigation.

Image P1 contains the scene, number 31, containing a variety of object

classes including agriculture, mountains, barren soil, and a river. An

airport is located in the top section of the images, on the left side of

the agricultural area. This scene was selected as the principal full

scene (PFS) since it does contain such a variety of object classes and

areas of varying degrees of data activity.

Image P2 is based on scene number 32 containing part of Lake St.

John, the Saguenay river, forest, and the city of Alona (Quebec), Canada.

Image P3, from scene number 33, predominantly contains coastal vegetated

mountains of Southern California interspersed with small lakes. Image P4,

from scene number 34, contains the Mojave desert and scattered irrigated

agricultural areas.

Image P1 was compressed and reconstructed using the SSDI/Rice

algorithm, image P2 used the SSDIA/Rice, image P3 used the SSDIA/Huffman,

and image P4 used the SSDI/Huffman. This selection of compression algorithms

effectively illustrates the capability of all four combinations of tech-

niques to provide the strictly information preserving compression and

reconstruction of MSS data.

Photographs P5 through P8 contain enlargements of the individual

spectral bands of the principal full scene. These enlargements are based

on the original MSS tape data corresponding to the full scene processed by

the various algorithms and provide a basis for comparison of the original

imagery with the processed and reconstructed imagery contained in

photographs P1 and P9 through P17.
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Photographs P9 through P16 contain the individual spectral bands

of the principal full scene after compression and reconstruction by the

essentially information preserving SSDIAM/Rice algorithm. For photographs

P9 through P12, a mapping of ml = 1 was used and each reconstructed

intensity level is either the same as the original level or deviates from

the original by +1 or-! intensity levels. A mapping of Iml = 3 was used

for photographs P13 through P16 allowing each reconstructed intensity level

to deviate as much as three intensity levels from the original sample level.

The strictly information preserving compression of the scene produced

an average bit rate of 3.59 bits/sample and no distortion. With Iml= 1

the average compressed bit rate was 2.71 bits/sample and a mean square

distortion of 0.0112 percent. With ImI=3, the average compressed bit rate

was 1.91 bits/sample and a mean square distortion of 0.103 percent. Figures

3.6-1 and 3.6-2 give error plots showing the magnitude of the deviation

between the original and reconstructed intensity levels for a portion of

band 3 of the principal full scene. Figure 3.6-1 is based on the mapping

lml=i and Figure 3.6-2 is based on the mapping Iml=3

The photographs show that no noticeable visual degradation results

from the use of mapping lml=l since this level is comparable to the system

noise including that introduced by the ground processing algorithm. A mapping

of ml = 3 does introduce visual degradation especially in areas of uniform

intensity such as the valley floor to the left of the agricultural area. This

contouring is most noticeable in spectral band 4 (infrared). Fortunately,

the algorithm tends to reproduce areas of medium and high data activity well

without severely degrading edges or introducing slope overload and overshoot

as often occurs in delta modulation algorithms.

Photograph P17 illustrates the effects of channel errors on-the per-

formance of the strictly information preserving SSDI/Rice algorithm. Photo-

graph P17 is based on a bit error rate of 10- 5 . This value was used since

it is felt that channels used for the transmission of ERTS data will have

an error rate better than 10-5. Errors were simulated on the computer

have an error rate better than 10-5 . Errors were simulated on the computer

by changing bit values in the compressed data bit stream at the appropriate

3-40



1011000110100 111 coo 0 11100000010100011 oioao0.11i0,0010010100000100000000ou 11011 000010011COIC01000100-01

101011011100100010111ll1110010010101000010111io0111110101100110001111011011011101101111010lillcl,)Ioo
illootloiol)ocoll)ollooiiiiiiiioiooooloolol11011000000011101111111001011111llo10111110000000001010co1101
1010000011101010111001011001101111010111100001000000100000000101011110001011000110000111110101100110
111111111111111110011010000000010111001110110111111100111111101111111111101110lillilloolloooooolollo
00001100000000.100010101111101001111000000oolooooo0oll101111011IL1000111100LO1111111111110110011100O111111110 10111011 1 1 --- 11CO000001111011
1111110100001001 

0---.- 0111

10111111111()10001001ooiioioonooiioiiiiiiio0110000010001010110010100011111111,110101100101()Glocolool1
iionoooooioiiiioiiiii10011100110101111100000000000001ioiioiooooociioooooioiii)101100001110110111(loooo
0111101111011001000001001101010001110101111000000001000011100101001001100010010011111111011001111110
;1001011110111ooololl01100001110111010#)Olloooloolloololliol0011110111100001100011111110000101111100OlI
11001011011111010111011000111000110101111111110000001010100010101illillioloiooilillilliloollilillooi
0100011010011010011 10,30111101000010100000010110101101011000010011011110101()000000000000101100000101
01110011100110011010()Illlllooloooloollloo0100010011101001011110o0100111101011illillilloooloilicillii
1001101110001111011111110011001111101011111000011111100110011100111001111111ooooicoocooioiioiocooiii
110000100011001010011ioiiiiio-oooi-q-qlooll1-1111-00.11,0111-00ii-o-lo 

03100-00110-011-010-1111111-illi'lleollio-cooo-o-

010011100111001010011101011010001ILlUUU1111010001000000101000011110100110111ll110000010011001.001001o
illillilloolliolollooo010110101101111111101101111011011011001101011000111illi1011111111111001101111i
iiiiiioiioiooiil(,"Oilloolocooloolocooolli11101000000ll 

01001001000001100100010010000000100001110101001

100110100010011010100001101100011 1110111100110111011100011111111100110011000liiiiooiooiiiooiooiI

011001111101101110010ociiooiooiiiioiioiiiiiiiiiiiiioioiooo01101100010101111111ililillillioloolillilo
11000 101111010 locolo 10011110011111001101110000 11111111101110111000001101000011110000011100 101OC13 101

iiiiiiiiiiooilc)ollloillillililloilloloolli0011111000011000100000001110iiiiioi0111100101010coooloooolI
0100011100001010101010000110011111100000001illilloollillooluillollooolloolo030ciooioiiooiiiiioiioioii
01100010000110100100011LOO100001001011111101001010111--l1111000-01110101-0OO-000001000LOOLO1010000100101.1
101111111111110001000olooolloooooliloooolliiiiiiiiooiioollooloolo1001011oioiui1001010111001010010011
11100100111100100110000000000000000030000000000010110110111111111illitilliillo1010011001001111011111
1010111000110001010131100101110000011111111ililloolo 

)O0030100101010011101011l1011111001011111000000I
-6-- -16-1-6166-1-61-666661 U60-0010-6

000101 0011101110 101011101 TM1010 iol-1061-6-0060-6066-ii -6-- -Oiiooo

1110111000C101001011011111110 I 011101010010111111000illoolliolillilliolloo0100110110111101011011100111
100110iliioooioooioioiioioii010001000010100001011010000101110101000110100011111100101110110100000000
01011110111110110 C) 0000101010011011111010000000301111111166666iiol6oiiiibfbi 

fdoll i ooffo

0011()010010()100110000100011000001100101000OLIO111010000031111000001110001101OOOOOOCOOOOOOOllllClll01
iolioooiiooiiocooooio10111110011101001111010101111101ililloilloooooolillooo1001101001110-00-1000cooooo
ioooiioiiiiooiioiioooiooiiioiicioiooio0011111010100100100100oilliollillillooll1100110110101001100110o*
1110001010100110011000010010110001000010111100000000010101001011000001110010oo0011010111001010011110
010111101000110101111iiiiiioooioioiioooof)o1011111101010001111001illooloolliic)oooollllolloollllllooioMil 0 1011011011011110010000111101011100010000ii-6-0-0--
0 -6 1---Iod 100163110111111111101oicoiiiioiioii -1110loollo
1001101110001001colioioooiooioiooiooolllllllooloo01100011111110000010101000101011(,NollololcollllllllI
1111110010011-100111f)Oilll!iOooollliloolol101001 ili100000011011)101010110001oioiocjicooooooioiiioi13101
101010011011111111111illillilloilibioililloooloooooooolioloooilililoioooc-oooooooooooolcilioinooooooi
0101110111(3101100100000000000000000001010011011010100OI)looolllloolllolllllOlioooiioiiiiiicoooiiiioio

Figure 3.6-1. Error in Levels Between Orl 1 1 a d Reconstructed Samples
in Band 3 of Scene 31 (ImI= )



12322222133210321 132210330011J333323011 ll2000l2202201200020.JJ301O133322U112C213U2UU11331Olj112O3,-2

2 1O2 3 3 3C22O0012202320231230133100022310J11 L12I21312112213322320l211
1 3 1 13121121011

3033112C303312010213212220301170131133I10
2 lZl 33 3 l' 111103O03220112b110t22 11130U

12111113220012212O1201220201OO133131033o22222103331222122111330013C33210012102331

03032302110 112332223T~33030002103002020 103212132012 10220011011332202222222i202312t~022210 1

2311031321Figure0113.6-2 Error in Levels BtweenlOriginl and Reconstructed Samples 1:3312113

120132132021130313in12 Band31 312of Scene 3,312mI3)231212111322122221I221



error rate. Such an error affects the reconstruction algorithm and

produces anomalous reconstructed data values until the next memory update
point where the algorithm again synchronizes with the compressed data
and generates correct data until the next error occurs' The current
simulation only provides such a memory update at the beginning of each

scan line but the algorithm can be easily modified to produce more

frequent updates.

3.7 IMPLEMENTATION OF THE SSDI/RICE ALGORITHM

An investigation of the implementation of the SSDI/Rice algorithm

was conducted concurrently with the simulation activities to determine

the logical data flow for such a system and estimates of hardware com-

plexity. Although the baseline system developed could not be optimized

within the scope of the present study, the investigation performed serves

to provide a basis for further study and refinement and permits tradeoffs

pertinent to decisions involving the use of such a data compression system

on board future earth observation satellites.

The SSDI/Rice Data Compression Unit (DCU) functional block diagram is

given in Figure 3.7-1. A flow chart of the DCU information transfer and

processing is illustrated in Figures 3.7-2 and 3.7-3. Figure 3.7-4 through

Figure 3.7-7 depict the basic hardware components necessary to implement the

SSDI and RICE algorithms. The data flow begins in Figure 3.7-4 and continues

to Figure 3.7-7 with the functional blocks listed identifying the rela-

tionship to the block diagram in Figure 3.7-1. The notation used in labeling

the components is listed in Figure 3.7-4. The baseline implementation

utilizes SSI and MSI Low-Power Schottky TTL (SN54LSXXX) combined with bi-

polar 1024 x 1 RAM's. Custom LSI (TRW Emitter Follower Logic) was investi-

gated for repeated functions such as the ALU/Latch. The estimated impact

was principally in a reduction of total parts and power of 10% and 0.8W

respectively as compared to the baseline. Since the development cost of

the LSI chip is sizable and the net effect on the DCU is minor, LSI was not

included in the baseline design.
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The baseline DCU without a power converter is summarized below:

* Data clock rate 5 MHZ (equivalent data rate 35M B/S)

* DCU Parts Total: 273 IC, 60 Discretes or 323 total

* Power: 26.7 watts

* Weight: 3.0 pounds

* Volume: 192 inches 3 (6" x 8" x 4").

The maximum clock rate capability is 10 MHz for the given design. The

rate can be further increased to 15 MHz maximum if selected components are

substituted with standard Schottky TTL MSI and speed enhancement IC's used

for Look Ahead Carry Generators for the Arithmetic/Logic Units (ALU's).

There is then a penalty in additional parts and power dissipation with a

corresponding slight increase in packaging.
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The unit characteristics for the baseline configuration is tabulated

in Table 3.4, for three types of units; I for 10 MHz, II for 15 MHz, and

III for 25 MHz. Type III was sized using Schottky TTL with Emitter - coupled

Logic (ECL) at critical points. The resulting characteristics, especially

power, are very large and are shown for comparative purposes. An optional

power converter is also listed in the same terms as the DCU and would be

directly additive to the associated DCU type. Example: Power (Type I) =

26.7 + 9 = 35.7 watts total.

While Table 3.5 shows three technologies providing increasing

input data rate capabilities of up to 175 Megabits per second, a severe

penalty in power, weight, and volume is imposed by a type III implementation.

If the system must run at data rates higher than 105 Megabits per second

a different form of the SSDI/Rice should be developed so that certain system

blocks process separate blocks of input data in a parallel fashion, later

reassembling the data into the appropriate serial bit stream. The output

data buffer size is a function of the buffer output bit rate and should

ideally adapt its parameters to the time-varying compression statistics.

A number of developing technologies, such as bubble and CCD memories could

permit the use of buffers having millions of bits of storage and occupying

a relatively small volume.

Table 3.5. DCU Unit Parameters

INPUT INPUT PARTS POWER NUMBER WEIGHT VOLUME

TYPE CLOCK RATE DATA RATE (WATTS) OF (LBS) (IN3)
(MHZ) (MBPS) IC DISC TOTAL SLICES

I 5 35 263 60 323 26.7 2 3.0 192

I 10 70 263 60 323 26.7 2 3.0 192

II 15 105 290 60 350 30.7 2-1/2 3.7 192

III 25 175 333 160 493 108.0 3 4.5 384

POWER CONVERTERS

TYPE PARTS TOTAL POWER NO. OF WEIGHT VOLUME

IC DISC (WATTS) SLICES (LBS) (IN3

I 10 240 250 9.0 1 1.5 96

II 10 240 250 10.0 1 1.5 96

III 20 250 270 36.0 1 3.0 128

Notes: 1. Slice form factor 6" x 8" x 2"

2. Power converter is optional, hence, add as necessary.
Assumed efficiency if 75%
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4. SUMMARY AND CONCLUSIONS OF THE INVESTIGATION

This section summarizes and discusses the major results of this

investigation and the relevance of the study to the ERTS program. The

intent of this section is to provide information which can assist in the

planning of future ERTS missions relative to the use of data compression

either on board the satellite or for ground-based applications.

4.1 DISCUSSION OF RESULTS

The information obtained by the processing of thirty-four ERTS MSS

scenes permits the drawing of certain conclusions regarding the relative performan

of the several data compression algorithms evaluated. Since the results ob-

tained are based on the necessarily finite amount of ERTS scenes used, the

conclusions reached are strictly valid only for this data but are representa-

tive of the level of performance to be expected for similar data. For example,

if a.given object class subscene yielded a compressed bit rate of 2.5 bits/sample,

other subscenes containing this class should produce similar results. The

variance of data statistics should also be minimal for similar objectclasses,

assuming that the data does not contain sensor or processing anomalies such as

that produced by the defective sensor in spectral band 2.

4.1.1 Data Statistics and Compression Performance

The MSS data used was based on ground processed tapes and one

unprocessed spacecraft tape. The ground processing includes a decompression

algorithm which performs a mapping of intensity levels in bands one through

three. The effects of the mapping can be seen from a comparison of the

probability density of the intensity levels taken from a ground processed

tape, Figure 3.3-3, and the corresponding distribution of intensities from the

same segment of data before ground processing, Figure 3.3-2. The processed

tape shows a redistribution of intensities with a corresponding omission of

certain intensity levels present in the spacecraft data. The effect of ground

processing on the performance of the compression algorithms will be discussed

later in this section.
4-1



Some of the scenes processed reveal the presence of anomalous

sensor data in spectral band 2. As shown in a segment of data values in

band 2 of scene 8, Figure 3.3-4, the anomalous data occurs every sixth scan

line when present. Such defective data is uncorrelated with the data in the

adjacent scan lines and with the equivalent scan lines in the other spectral

bands, producing a degradation in the performance of the data compression

algorithms which require a high degree of spatial and spectral correlation

in order to obtain good compression.

For data tested, not containing this anomalous data, the measured

data statistics were fairly accurate indicators of data compression performance,

except for the variances of data intensities. This variance measures the

global variation in intensity over the scene,whereas the performance of the

compression algorithms is dependent on local variations. Therefore, a scene

for which the intensity levels are very uniform over local areas while the

mean intensity changes dramatically over large regions can exhibit both a

high variance and a low compressed bit rate. Conversely, a scene which

exhibits a low global data variance in all spectral bands produces a low

compressed bit rate. The joint probability distribution function of first

difference values is a better indicator of the degree of compression possible

for a scene, with compression increasing as the clustering of joint differences

tightens around the origin. The cross spectral-spatial correlation is a

valid indicator of the average spectral correlation of the scene over local

regions. The less rapid the fall-off and the closer the spacing of the 90%,

95%, and 99% correlation curves, the higher the compression.

Table 4.1 summarizes the average compression obtained with each

algorithm for the uniform object classes evaluated. For multiple scenes

containing the same object class, the range of compression results falls

within ten percent of the average value, except for the object class labeled

forests where the compression deviates up to thirteen percent from the median

value. Such differences reflect variations of location, sun angle, and time

of year among the scenes processed. The compressed bit rates generally reflect

the level of activity in the scene, progressing from the low data activity seen

over large bodies of water to the high activity occurring from field-to-field

in agricultural areas.

4-2



Table 4.1. Average Compressed Bit Rates for Uniform Object Classes
(Based on Scenes Processed)

GLOBAL HUFFMAN

OBJECT CLASS AD. HUFF. RICE SHELL SSDI SSDA SSDIAM

CLOUDS 1.42 1.31 1.697 1.508 1.491 1.427

WATER 1.51 1.40 1.956 1.921 1.635 1.550

SNOW 1.78 1.79 2.014 2.135 1.890 1.453

PLAINS 2.55 2.67 2.827 2.790 3.251 2.724

DESERT 2.74 2.84 3.081 2.964 2.983 2.484

MOUNTAINS 3.23 3.24 3.403 3.500 3.362 2.798

CITY 3.06 3.09 3.379 3.373 3.343 2.731

FOREST 3.10 3.11 3.339 3.370 3.368 2.891

GRASSLAND 3.32 3.35 3.581 3.536 3.487 2.981

AGRICULTURE 3.41 3.42 3.640 3.566 3.593 3.042



The entries in Table 4.1 can be used as a guide for determining the

expected level of compression for another scene containing the same object

class. The compression of a full scene of data can be roughly estimated by

weighing the averaged compressed bit rate of each object class contained in

the scene by the percentage occurrence of the class over the scene. The

resulting rate should be fairly close, especially if the adaptive Huffman

or Rice algorithms are used. The estimate could be too low for the global

Huffman algorithm if the bit rates of the object classes in the scene sub-

stantially differ, as in the case of a large lake surrounded by agriculture

or forest, since the code developed for the entire scene may be a poor match

to local areas. The estimate should also be tempered by the presence of haze,

smog, or clouds. Haze and smog, improve compression by lessening the apparent

data activity as seen by the satellite whereas small broken clouds can produce

large intensity jumps at their periphery, decreasing compression. Large cloud

cover, however, can be considered as a separate uniform object class when

performing such estimates.

Based on the scenes processed, the average bit rates for the various

compression techniques are as follows

Global Huffman
Adaptive Rice

SHELL SSDI SSDIA SSDIAM a Rice
Huffman

Average bit rate 2.99 2.98 2.92 2.50 2.67 2.70

Based on the actual compressed tapes generated for the 25 x 25 n mi

full scenes, a compression ratio of 2:1 produces a compressed bit stream that

fills 7.1 percent of a standard reel of magnetic tape. This result and the

average bit rates achieved for the scenes processed indicate that almost all

100 x 100 n.mi scenes could be compressed to occupy a single reel of tape as

opposed to the four reels now required. This result can be of great economic

benefit to NASA for storage, transmittal, and achieving of ERTS imagery data.

With an essentially information preserving algorithm such as the SSDIAM an even

greater compaction of the data would result.

The above measures of data compression performance and compressed bit

rate are based on the use of ground processed tapes. One tape of spacecraft
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data, before ground processing, was received and evaluated. The results of
processing a given subscene of this spacecraft data and the same subscene
after ground processing indicated a lower compressed bit rate with the
spacecraft data for all the strictly information preserving data compression
techniques used. This decrease in bit rate is probably due to the higher
correlation of the spacecraft data which does not contain the deleterious
effects of the ground decompression mapping of intensity levels.

It is not possible to decisively conclude that all spacecraft data
will produce a lower compressed bit rate than the corresponding ground processed
data on the basis of the single spacecraft tape processed. However, since the
bit rates differed by only a few percent, it is reasonable to conclude that
the results achieved by the processing of ground processed tapes during the
investigation are applicable to spacecraft data with only minor changes in
the bit rates achieved with each source of data.

4.1.2 Effects of Distortion and Channel Errors

The SSDIAM/Rice algorithm was used on the principal full scene to
evaluate the effects of essentially information preserving photographs P9
through P16 of Appendix A. The results indicate that a substantial decrease
in bit rate can be achieved by this form of data compression without introducing
a severe distortion of the reconstructed image. For the example illustrated,
the strictly information preserving compressed bit rate was 33% larger than
the SSDIAM bit rate for mapping ml = 1 and about 90% larger than the
SSDIAM bit rate for mapping Iml = 3. The distortion introduced for mapping

Iml = 1 cannot be discerned visually when compared with the original imagery
and the effect on the data is comparable to that introduced by decompression
during ground processing. The distortion produced by the mapping Imi = 3 can
be seen especially in areas having a relatively uniform intensity where the
effect is similar to the contouring often seen in imagery compressed by delta
modulation techniques. The effects of distortion are less evident in areas of
high data activity and no slope overload or overshoot effects are produced by

the SSDIAM algorithm.

An adaptive form of the SSDIAM is suggested based on the results of
this investigation. In this study a fixed mapping block size of 8 pixels
was used. Ideally, this block size would vary with data activity as discussed
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in Section 2.1.4. In addition, mapping level m would vary adaptively as a

function of both the data activity and mean block intensity level to compen-

sate for the logarithmic response of the eye. Note that these adaptive block

techniques only add complexity to the compression algorithm. The reconstruction

algorithm is the same whether the compression is strictly or essentially

information preserving. While an optimal form of the SSDIAM could produce

reconstructed data useful for the majority of investigations involving

visual interpretation of ERTS imagery, the effects of the distortion on

experiments involving computer processing of the data are unknown at present.

Due to the mechanization of the SSDIAM, however, in which the block spectral

means remain unchanged by the processing involved, the effects of the mappings

may not severely degrade the accuracy of algorithms used for classification of

crops. Since the SSDIAM does produce a significant increase in compression, the

effects of such distortion on the results of various ERTS investigations should

be evaluated.

The compressed data is far more vulnerable to the effects of channel

errors due to the removal of the redundancy present in the PCM spacecraft

data. Such errors can occur over the transmission link from the satellite to

the ground receiver or by dropouts on the magnetic tape storing the data. The

effects of bit errors propogate differently depending on the compression

algorithm used. For the SSDI/Rice algorithm used in this study, a bit error

produces incorrect reconstructed pixel intensities until the next memory update.

This is true whether a single bit was changed or a burst of noise affected a

number of bits. Since the present simulation updates the memory only at the

beginning of each scan line, the number of pixels corrupted depends upon the

point in the scan line when the first bit error occurred.

Photographs P17 through P24 shows the effects of channel bit error rates

of 10-5 and 10-6 on the reconstruction of the principal image. Errors occurring

at rate 10-6 produce only minor effects on the data while errors occurring at

rate 10-5 can be seen. Since transmission channels and tape recorders used for

the ERTS program have less than a 10-5 bit error rate, the effects of such

errors should not be a limitation on the use of data compression. Moreover,

the propagation of such errors can be further limited by the insertion of

several memory updates on each scan line. The overhead bits required for

four or five memory updates per scan line would only increase the compressed

bit rate by a fraction of one percent.
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4.1.3 Implementation of the Compression Algorithms

Section 3 contains a mechanization of the SSDI/Rice algorithm and

a preliminary sizing of the hardware parameters associated with this system.

This combination of the SSDI and Rice techniques appears to be a viable form

of data compression for use aboard a spacecraft for several reasons:

* The SSDI is the simplest algorithm to implement and is less

affected by sensor anomalies than the SSDI technique.

* The hardware required for the Rice implementation is moderately

complex but capable of operation at high bit rates with current

technology.

* Channel errors produce distortion in the SSDI/Rice reconstructed

data that are constrained to a segment of a single scan line.

Use of either the SSDIA or adaptive Huffman techniques require

the use of a higher quality channel since errors can propogate

over several scan lines.

* The Rice algorithm has the adaptivity required to produce a high

degree of compression for data where the source statistics vary

considerably over the scene.

If the SSDIA/Rice technique is implemented as an alternative, the

complexity required in the processor would increase slightly but an increase

in storage would result due to the averages which must be computed using

intensities from the previous scan line. In general, an entire scan line of

data must be stored in each spectral band to accomplish the averaging. A

shift register form of storage would permit the rapid access of the required

intensity samples from the previous line. As each new intensity is recon-

structed on the current line it is shifted into the register, shifting out

the third intensity from the previous line required for the current averaging

operation. The averaging of the four samples is easily accomplished by adding

the appropriate four intensities and shifting the result two places for the

divide operation.

The storage of a full scan line of intensities in each spectral band

implies a storage of almost 90 kilobits, a value which may not be excessive

in the near future as CCD storage becomes practical. The required storage could
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be halved by use of a modified SSDIA algorithm in which each two successive

reconstructed intensities are averaged and stored as a single number to be

used for SSDIA averaging when accessed.

Implementation of the adaptive Huffman algorithm was not studied. The

most difficult portion of this algorithm to implement is the hardware required

to rapidly convert the probability distribution of symbols measured on one

scan line into a Huffman code for use on symbols in the next scan line. This

could be done off line by the following sequence of operations:

* Measure symbol probabilities for scan line i

* Generate and store symbols for scan line i+l and in parallel

generate the Huffman code for line i+l simultaneously

* Encode symbols from scan line i+l during scan line i+2

This technique requires the storage of two scan lines of symbols

at a time but the encoding delay permits each new Huffman code to be generated

over the time required to scan a line of new data. A suboptimal alternative

would involve the storage of several fixed Huffman codes on the spacecraft

and, at the end of each scan line, select that fixed code which best matches

the measured symbol statistics for use in encoding the following scan line

symbols.

The added complexity of the SSBIM or SSDIAM hardware over that of its

strictly information preserving counterpart is minimal. The block averaging

required involves simple add operations and, if the number of pixels is a

power of two (2k), k right shifts of the sum. Each intensity sample is then

varied up to m levels closer to this block mean before the SSDI or SSDIA

operations are executed.

For ground based data compression implemented by computer, a different

set of requirements is imposed. The compression should be relatively fast to

prevent taking up an excessive amount of computer time beyond that already

required for processing the ERTS imagery received. The compression achieved

should be sufficient so that the resulting economic benefits offset the

additional processing. In addition, reconstruction algorithms should be

efficient and capable of being performed by the user of the data in most

cases. The SSDI/Huffman algorithm has merit in such applications and a
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preliminary approach to implementing such a ground based compression and

reconstruction technique is outlined in Appendix D.

4.1.4 Zelative Algorithm Performance

While no decisive statements can be made concerning the absolute

performance of each algorithm because of the finite amount of data processed

and the presence of anomalous data varying from scene to scene, certain

general conclusions can be drawn. First, the adaptive Huffman and Rice

algorithms invariably give a lower bit rate than the global Huffman algorithm

based on the same set of symbols. This result is expected since global symbol

statistics are rarely optimal for local areas within the scene (unless the scene

contains a very uniform object class). The use of an adaptive coding tech-

nique is mandatory aboard a spacecraft where all object classes are observed.

Due to implementation considerations, the Rice algorithm appears to be a viable

since it is capable of operating at high data rates and requires no computation

or storage of source symbols beyond those in the block being processed. As

shown in Appendix D, the global Huffman code has advantages for the ground

compression of individual 100 x 100 nmi frames of ERTS data for which the

global statistics are sufficient to obtain a significant compaction of data

allowing the savings of several tapes per frame.

Since the performance of the SHELL algorithm is comparable to that of

the SSDI and the implementation of the SSDI algorithm is less complex, the

SHELL technique has little merit for further consideration. Of the two strictly

information preserving algorithms, SSDI and SSDIA, results are mixed. The

SSDI provides better compression if the correlation of the data is significantly

higher along the scan line than from one scan line to the next. For this reason,

the presence of anomalous data, as in spectral band 2, produces a higher bit rate

with the SSDIA than occurs with the SSDI. Although the implementation of the

SSDIA is not significantly more complex than that of the SSDI, the SSDIA re-

quires additional storage. The propagation of errors in the SSDI algorithm

is constrained to a segment of a scan line between successive memory update

points but errors in one scan line of data reconstructed by the SSDIA also effect

reconstructed values in following scan lines due to the averaging operation
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performed. This imposes a requirement for a higher quality transmission

channel for the SSDIA than needed for the SSDI to give a similar quality of

reconstructed data.

The essentially information preserving SSDIM or SSDIAM algorithms

yield significantly lower compressed bit rates than the strictly information

preserving algorithms. The additional processing required for the mapping

operation is negligible and the main consideration is the impact of the dis-

tortion on users of ERTS data. From the preliminary results achieved during

this investigation, it appears that an improved adaptive form of this algorithm
could have potential application in the ERTS program, especially for data

compressed and stored on the ground.

Although only one set of tapes of spacecraft data was processed,

results indicate that the algorithms give a comparable compression for-space-

craft data as for ground processed data and the algorithm performances maintain

the same order of ranking. The scene processed produced a somewhat lower
compressed bit rate for spacecraft data than for ground processed data. It
cannot be conclusively d etermined from this limited data if this is a general

result.

4.2 IMPACT OF DATA COMPRESSION ON THE ERTS PROGRAM

4.2.1 The Reauirement for Data ComDression in Future ERTS Missions

The multispectral imaging sensors of ERTS-A generate tens of billions of
bits daily. In succeeding missions, this figure will likely multiply by
several orders of magnitude as higher resolution sensors and more spectral

bands are added. Such volumes of data and the implied data rates present

severe problems in communication links, in ground data processing, and in

ground data storage and archiving. The actual feasibility of including an
experiment may therefore be threatened by the large data rate and the accom-

panying data handling and communication overload. In addition, several digital

tapes must be provided each investigator for every scene he requests.

Efficient source coding, i.e., data compression, can yield significant

benefits and alleviate such problems by exploiting redundancies in the data to
reduce the amount of data which must be transmitted, processed, and stored. The
objective of source encoding is the exploitation of the statistical dependence

between data samples so that only that information which is essential to
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the faithful reproduction of the image need be transmitted.

The success of the earth resources survey programs will be measured

to a large extent by the satisfaction provided users of the data. That

satisfaction depends on how well the data, as formatted and processed, helps

the individual accomplish tasks that are significant relative to his goals.

Any processing performed on the data should be accomplished without sacrificing

the information fidelity required by the user.

Many forms of data compression have been studied, some simple and

others quite complex, but not all of these techniques preserve information

in the sense that the original data can be reconstructed with arbitrarily

small error. A strictly information preserving data compression algorithm

provides reconstructed data identical to the digital sensor data entering the

compressor. Such a technique preserves the archived data and cannot be

criticized by any user as invalidating his data requirements. On the other

hand, strictly information preserving techniques are limited in the amount of

compression available.

Essentially information preserving compression permits a much higher

compression to be obtained but permits a small amount of distortion in the

reconstructed data. While an average compression much greater than 2:1 is

difficult to achieve with strictly information preserving techniques, essen-

tially information preserving algorithms can yield significantly higher com-

pressions with only a modest degree of distortion. In many cases, if the com-

pression is properly performed, much of the distortion actually arises from

elimination of sensor noise rather than by the destruction of useful data. Such

a form of essentially information preserving compression yields data which can

be used by many of the scientific investigators, and the reconstructed image

simply suffers an apparent slight decrease in signal-to-noise ratio which can

possibly be improved by postprocessing techniques.

The requirements for data compression are different, depending on

whether the initial compression is performed on-board the satellite or on

the ground. For on-board processing, size, power, weight, and complexity must

be minimized; a more complex reconstruction may be used, however, since recon-

struction is usually performed by a ground-based computer. Ground-based

compression may be considerably more complex since it would be performed by a
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large computer which need not necessarily operate in real time. Reconstruction,

in this case, usually is performed by the user, and an efficient rapid recon-

struction is mandatory to reduce the user's cost. There is a definite need

for more than one form of data compression.

4.2.2 Application of this Investigation to ERTS Program

This study concentrated on the low complexity SSDi algorithms combined

with source encoding as a technique applicable to either the spacecraft or

ground-based data compression of ERTS digitized imagery. The results are

quite encouraging regarding the suitability of these techniques for applications

in the ERTS program.

The SSDI/Huffman algorithm forms the basis of an efficient technique

for ground-based data compression and reconstruction that can be performed

with a modest amount of computer processing. Results indicate that the

average 100 x 100 n mi scene can be compressed to a single reel of magnetic

tape and reconstructed with no loss of information. This reduction in storage

from four reels of tape to a single reel yields economic benefits through a

reduction in tape costs and in the tape storage facilities requirpd while

permitting a simplified archival procedure to be employed.

The essentially information preserving SSDIM or SSDIAM algorithms can

yield reconstructed data which has a fidelity acceptable for many users of

ERTS data and allows an even greater compaction of data. An improved adaptive

form of this algorithm may allow storage of two 100 x 100 n mi scenes on a

single reel of tape. The distortion induced at present in the data by the

ground decompression algorithms is comparable in degree to that produced by

the SSDIM with Iml = 1. Proposed techniques for the geometric correction of

ERTS imagery involve prediction on interpolation of corrected data intensities,

a process which is also essentially information preserving. Instead of cas-

cading the operations of decompression, geometric correction, and data compression

the three techniques could be combined into a composite algorithm which would

increase processing efficiency while minimizing the data stored.

The SSDI/Rice technique is a viable candidate for spacecraft applications

permitting a doubling of the data transmitted to ground. The reconstructed data
-6

is of high quality provided the channel bit error rate is 10-6 or less. To

further decrease the effects of channel errors and allow the use of downlinks

having a higher bit error rate, error correction coding can be applied to the

compressed data. 4-12



In conclusion, the results of this study indicate that the use of

data compression on ERTS data yields both economic and operational benefits.

The tradeoff between strictly and essentially information preserving forms

of the algorithms depends on the effect of slight distortion on the various

uses of ERTS data.
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5. RECOMMENDATIONS FOR FUTURE WORK

The present study has investigated both the degree and variation in

compression for the SSDI algorithms using ground processed ERTS-1 tapes

(and one spacecraft data tape). The results obtained in this study are

relevant to the objectives set forth in the proposal but as system require-

ments change in the future it is recommended that similar studies be

performed. As future scanners are developed with different resolution,

different quantizer, or a different set of spectral bands, the expected

level of compression would change. The effects of these different para-

meters are not completely clear at present but compression should increase

as the average spectral band separation is narrowed and as system noise

diminishes. Changes in ground processing algorithms can also affect the

level of compression. Such system changes should be accompanied by a

corresponding re-processing of the data with the same or appropriately

modified compression algorithms to ascertain the compression and data

statistics that result. It is probably sufficient to re-run only a few

selected subscenes for purposes of comparison rather than a study of the

present scope.

While one spacecraft data tape was processed and compared to the

equivalent ground processed tape during the current study, more conclusive

results would be obtained by processing a number of these tapes. Such an

investigation would yield a body of data of greater relevance to the use

of data compression aboard a spacecraft than is provided by the present

study. It is recommended that such a study be limited to simulation of

the SSDI and SSDIA algorithms followed by Rice encoding since these appear

to be the better candidates for spacecraft applications.

A necessary precursor to the use of data compression aboard

spacecraft is a more extensive study of the hardware implementation involved.

The preliminary study of an implementation of the SSDI/Rice system, given

in Section 3, should be refined and extended to a breadboard model. Such

a study would develop a more comprehensive understanding of hardware per-

formance and tradeoffs and permit a detailed comparison of actual with

simulated performance, especially in the area of buffer parameters.
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Another area in which additional work is required is that of

efficient ground-based compression and reconstruction of ERTS data. The

computer programs used in the present study were developed for the CDC-

6500 digital computer with the goal of obtaining a large number of statis-

tical parameters characterizing the data and algorithm performance. The

scope of the current investigation neither required nor permitted an opti-

mization of these algorithms on the basis of ground processing efficiency.

Based on the results obtained and the attendant benefits to archiving and

tape transmittal, an investigation into the form such an operational system

should have appears to be a logical extension of the current study. The

appendix describes some preliminary thoughts on a technique, based on the

SSDI/Huffman compression algorithm, which permits a rapid processing of

ERTS imagery applicable to both large scale computer systems and modest

minicomputers.

Although the current investigation concentrated on strictly

information preserving techniques, the results obtained with the essentially
information preserving SSDIAM algorithm indicate that a sliht level of

distortion, properly performed, may yield reconstructed imagery acceptable

to many users of ERTS data. Such an investigation would determine the level

and type of distortion incurred by algorithms such as the SSDIAM and the block-

interpolation SSDI and the effects of such processed data on various investi-

gations including both photographic interpreters and computer-aided inter-

pretations of the data. Such a study could lead to an optimized algorithm

which would not compromise the intended use of the data anymore than such

standard processing techniques as geometric correction, while yielding

substantially higher compression than is possible with strictly information

preserving techniques.
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APPENDIX B: COMPUTER OUTPUT

This section contains the set of computer print output resulting

from the operation of programs DCSTAT1 and DCSTAT2 on the Principal Full

Scene (number 31).
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BANDI BAND2 BAND3 BAND4 TOTAL

MU 51.220 57.761 56.890 23. 880 47.438

SIGMA 174.436 273.124 170.609 43.519 356.721
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-5 .006 4* 1100
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41 7'3 .666 3. 3? ?.67 3.645
42 . 74e 7"Cc ,  3. '7 3.472 3.633
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APPENDIX C

ALGORITHM FOR UNPACKING AND DECODING

The algorithm shown in Figure C-I unpacks and decodes the packed,

encoded data samples. Reading and writing of data blocks is double

buffered and overlapped with processing. A table look-up operation is

performed to decode compressed picture information and obtain an index

for unpacking. The compressed picture information is further processed

to reconstruct each picture.

The algorithm details the time critical operations of unpacking

and decoding. The following discussion explains how unpacking and de-

coding can be performed on a minicomputer to minimize time and cost.

For purposes of discussion, data is read from one of two blocks (j

pointer) for processing and written to one of two blocks (k pointer).

The four data blocks reside in the main memory to buffer information

between the processor and input/output devices.

Eight registers contain the immediate information required for

processing successive data samples. The following table describes the

the role of each register. The word length of the machine is denoted

by n.

R1 accumulator.

R2 s, shift index for unpacking.

R3 a a register pair to contain from n to 2n

R4 b bits of packed, encoded data samples.

The high order bit can be shifted left out

of b into the low order bit position in a.

R5 d, the number of left-justified data bits

remaining in b.

R6 i, the index into block j for moving data to

register b.

R7 j, input data block pointer.

R8 k, output data block pointer.
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Critical path

-- - - - - Subcritical path
d=o,i=o,j=o,k=o

Copy high order
Read into block 12 bits of a to

j, load accum- accumulator
ulator with j(o)

Table
Lookup
for
v and s

Process
V

(SSDI- )

Double buffer out
put (k pointer),
overlan with

Nu 'O shift a,b
s < d -- s=d -- d bits left

YES YES

d=d-s dsisd
I d=n-s

Shift a,b Shift a,b Load b with
s bits left s bits left j(i)

I I

Load b with Shift a,
Sj(i) s bits left

Double buffer in- Mask YES
put, overlap with _ . data in - i-i+1 -

processi ng

Figure C-1. Reconstruction Algorithm Flow
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At START, data is read into the input buffer, pointers are

initialized, and the first word is copied into a from the buffer.

The N=12 high order bits of a are used as an index to a table to

obtain the data value (v) and length (s) of the first code word.

The value v is used in picture reconstruction according to the inverse
SSDI algorithm as previously discussed. The length of the code word, s,
is used in the following sequence of steps to unpack the next code

word. The parameter s represents the number of bits that the

register pair a-b must be shifted left. Before such shifting,

however, it is necessary to determine when another word of packed,

encoded data samples must be loaded into the b register. This

question is resolved by comparing s and d (the number of data bits

in b). In the general case s is less than d, so d is decremented,
shifting is performed, and the algorithm returns to a to repeat

the table look-up for the 12 high-order bits of a.

If s equals d, a is reset to the machine word length, a-b is

shifted left s bits, and the next word from the input buffer is

loaded into b. Before returning to a, the index i is incremented

to point to the next word in the input buffer or another block is

read if the current input buffer is empty.

If s is greater than d (initially d = 0) a-b is shifted until

b is empty, b is loaded with another word, and a-b is shifted left

the remaining s-d bits. The index i is incremented or another block

is read before returning to a.

The critical path in this algorithm is the case where s is less

than d, because the average code word length is less than one-third

the machine word length. This path is shorter than the other two

because no indexing or reading is required to service the b register.

The next most frequently used path corresponds to the case of s

greater than d. In all cases the alignment of code words in a is

expedited by using the registers for immediate processing instead of

accessing memory.
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APPENDIX D

EFFICIENT GROUND-BASED DATA COMPRESSION OF IMAGES

The volume of data gathered by earth observation satellites such as

the Earth Resources Technology Satellites (ERTS) produce major data handling

problems both in ground data archiving and in the transmission of the data to

the various investigators. Since each ground scene (100 nmi x 100 nmi)

occupies four computer tapes, tape cost and storage facilities for the data

produced became significant. The use of ground based data compression can

diminish the magnitude of these problems.

To be acceptable for such processing, several requirements must be met

by the compression algorithm. Of primary importance, the data compression

technique must permit reconstruction of the data with archival fidelity, i.e.,

no error can be introduced into the data. The strictly information preserving

SSDI and SSDIA algorithms meet this requirement.

A second constraint on the processing technique requires a moderately

simple algorithm for compressing the ERTS data received on ground and a

very efficient reconstruction algorithm. The processing time required for

the initial compression which is performed only once can be substantially

longer than the reconstruction time since the reconstruction of a given scene

may be performed many times by different investigators.

The reconstruction will also be performed by different user processing

facilities ranging from modest minicomputers to large computer systems. The

algorithm should be applicable to virtually any computer, setting limits on

storage requirements, word size, and the instruction set used.

A final requirement is that the compression achieved be sufficient

to justify the added processing time required for the reconstruction. A

compression of 2:1 would permit a saving of three magnetic tapes per scene.
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The SSDI transform combined with Huffmann encoding form the basis of a

ground-based data compression system which can fulfill the above requirements.

The SSDI is a very efficient algorithm, requiring only 7/4 subtracts/sample

on the average and the inverse SSDI requires the same number of adds for

reconstruction. This rapid encoding and reconstruction combined with a table

look-up Huffman encoding and decoding of the data yield an algorithm which

requires a minimal number of machine operations for processing the data while

giving an information preserving data compression comparable to that achieved

by more sophisticated algorithms. Huffman coding can be performed based on

the statistics of the entire scene or adaptively, based on the statistics of

blocks of data. Although locally adaptive Huffman coding gives a higher

compression than coding based on global statistics of the entire scene,

adaptive coding entails an increased complexity when encoding and decoding

the data. Global Huffman coding is quite attractive for compression of

ERTS data since the entire decoding operation is based on a single code.

The SSDIA algorithm permits a slightly higher degree of compression at the

expense of increased storage and processing time. To perform the averaging

operation, an entire scan line must be stored in each spectral band and an

averaging operation performed for each input intensity. This additional

load is negligible for the large computer used for encoding the data but

could be a burden for reconstruction, especially if a small minicomputer

is used with limited storage capabilities.

A second problem arises if SSDIA is used. Since the reconstruction

algorithm of the SSDIA data presupposes information regarding the intensities

of the pixels in the previous scan line, decoding must proceed from the first

scan line of the image. If a user wanted to reconstruct only a portion of

the data for his investigation, the SSDIA forces him to initially reconstruct

all four tapes before he can select the area of interest. SSDI permits

the operator to start at any scan line he desires and reconstruct only the

segment of the tape he requires.
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D.1 SSDI/HUFFMAN ENCODING OF MSS TAPES

Generation of the Huffman coded tapes from the MSS tapes would be

performed once for each ERTS image received. The encoding operation should

be efficiently performed with a minimum of operator interaction and the encoded

data must be in a form that allows rapid decoding at user facilities. A

technique will be described that meets these requirements while halving

the number of tapes required for archiving and transmittal to the users

of the data. Figure D-1 presents the basic data flow required for encoding

the MSS tapes. The original four MSS tapes describing the scene are

loaded onto the computer which subsequently generates the sequence of

SSDI symbols. These symbols and auxiliary overhead data are written on

intermediate tapes. Concurrent with the generation of the SSDI symbols,

the probability of occurrence of each symbol is computed and stored in an

array PSSDI. This array is of length 256 to include all possible SSDI

levels which might occur.

MSS
TAPES

SSDI
INTERME-

SSDI DI ATE
TAPES

UPDATE

SSDI

COMPUTE HUFFMAN
CODE FOR SCENE.
OUTPUT TABLE
HUF

CALL WRITE TABLE

DECODE 0 ON FIRST
FILE OF CMSSI

GENERATE COM-
PRESSED BIT
STREAM USING CMSS1
TABLE HUF CMSS2

Figure D-1. Flow Chart for Encoding Data
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After the input tapes have been read and the intermediate tapes generated,

the distribution of SSDI symbols for the entire scene is used to generate the

Huffman code to be used. The subroutine CODE generates the Huffman code

desired and generates a table HUF of length 256. Each entry of table HUF

contains the Huffman code associated with a particular SSDI symbol. Sub-

routine DECODE generates a table D which will be used by the decoding algor-

ithm to enable table-look-up reconstruction of the data at the users processing

facility.

The decoding table D is initially written as the first file on the output

tape CMSS1. Following this, the Huffman encoded bit stream is written on the

remainder of CMSS1 and CMSS2. The intermediate SSDI tapes and the table HUF

are used concurrently to generate this compressed data. With each SSDI symbol

read from the intermediate tape, an entry in array HUF is called where the

entry is called with an argument corresponding to the SSDI symbol read. This

array call returns the binary Huffman code associated with the symbol and that

code word is written onto CMSS1 or CrMSS2. The code words are allowed to over-

lap computer words in order to obtain a maximum compaction of the data.

To simplify reconstruction, several constraints are imposed on the code

words assigned to SSDI symbols. First, no code word is allowed to have more

than N bits. The choice of N will be discussed later. To permit this, low

probability symbols are assigned a Huffman coded prefix CL of at most N-8

bits. This prefix is then followed by true eight bits to allow separation

of the symbols lumped under this prefix. An efficient version of the Huffman

coding algorithm has been developed and validated at TRW, as described

in section 2.2.

This technique preserves the instantaneous property of the code.
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At the beginning of a scan line, the first picture element in each

spectral band is transmitted as a direct 7 bit value. Occurrence of the

beginning of a scan line is designated in the coded bit stream by CL

followed by eight ones. The next twenty-eight bits are the intensities of the

first elements. All other picture elements in the scan line are encoded by

the SSDI.

The table generated by subroutine DECODE contains an array of 2N entries.

The address of each entry corresponds to a sequence of N bits and the entry

itself contains two quantities of information required by the reconstruction

algorithm. One quantity is the first decodable symbol in that string of bits.

Since the number of bits in an allowable Huffman code word can vary from one to

N bits, each table entry is guaranteed to contain a decoded symbol. Although

on the average several decodable symbols are contained in N bits, it appears

that one decode per table entry permits a more economical reconstruction

algorithm. The second quantity contained in a table entry is the number of

shifts required to position the next decodable word so that it will begin

in the first bit position of the next N bit string.

As an example, suppose that the first decodable word in the N bit

sequence was CK of length K bits. The table entry addressed by these N

bits would return SSDI symbol SK, corresponding to codeword CK, and the

number of shifts, K, required to position the next codeword as the header

of the subsequent N bit sequence.

The SSDI algorithm is very fast requiring seven.subtract operations per

set of four input intensity samples. The time required for these operations

and the associated fetches from local storage is less than the time required

for reading in the four input MSS tapes, implying that this stage of pro-

cessing is limited by tape speed. The required calls to subroutines CODE and

This encodinq operation takes into account the operations which must be
performed by the decoding algorithm.
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DECODE required a total time of about three seconds. Generation of the

Huffaan coded bit stream using the table look up technique is limited by the

time required to read in the intermediate SSDI tapes and write tapes CMSS1

and CMSS2. Thus, the entire encoding operation is essentially the same as

the tape handling time.

The storage required for encoding tapes is minimal and is easily accom-

modated by any large computer. The generation of the SSDI symbols and the

intermediate tapes requires the storage of eight input samples and four

differences. The probability array PSSDI is of length 256. Array HUF is

of length 256. Array D is of length 2N, where N may typically equal 12.

Each entry of D contains 8 bits giving the symbol decoded, followed by 4

bits giving the number of shifts required. The Huffman coding routine requires

an additional array storage of length 1024.

D.2 DECODING AND RECONSTRUCTION PROCEDURE

The primary requirements imposed on the decoding algorithm are:

e Rapid reconstruction of the digital data

e Required storage within the limitations of modest minicomputer
systems

* All computations and arrays limited to the single precision
word length of the machines used

e Minimal operator interaction required.

These constraints will ensure that the algorithm selected can be implemented

at all user installations. The goal of the algorithm development is a re-

construction technique that takes about the same time for reconstructing

the compressed tapes as required for reading the original MSS tapes and

which would require negligible additional effort by the computer operator.

Since there are over 27 million intensity samples per 100 nmi x 100 nmi

scene, a very fast algorithm is necessary to minimize the number of machine

operations required to decode each sample. Knowledge of the computer

structure is essential so that an optimum flow can be established and an.

efficient division made between input/output operations and central processing.
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The time of critical machine operations that are performed often must be

minimized, perhaps at the expense of lengthening operations that are

performed infrequently. One example of this involves the minimization of

normal bit decoding at the expense of increasing the time for restoring pixel

intensities at the beginning of a scan line since the latter procedure occurs

infrequently.

A block diagram of the essential reconstruction flow is given in Figure D-2.

A more detailed discussion of the machine operations involved in decoding is

given in Appendix C.

CMSS1
CMSS2

EXTRACT
BITS

INTO
BUFFER

MASK

BITS

ACCESS

D(i)

SE 4ITIES

IN BUFFER

YES

SHIFT BUFFER

BY S i 
BITS

Figure D-2. Flow of the Decoding
Algorithm
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The input tapes contain the encoded bit stream in which no Huffman code-

word contains more than N bits. A sequence of M > N bits is extracted at a

time from the input tapes and stored in an input register. The value of M

depends on the word length of the computer used and the number of registers

available. Parameter M should be as large as possible in order to minimize

the number of calls to the input tape which consume valuable processing time.

A sequence of N bits is extracted from the input register by appropriate

masking operations. Decoding Table D, which has been read from the first file

on the input tapes and put into local storage, is used to determine the first

symbol contained in the N bit sequence. The N bit sequence is used as the

address to access the proper table entry. This entry returns 12 bits of

decoding information. The first 8 bits represent the first symbol Vi

in the sequence. The next 4 bits represent the number of shifts Si required

to position the next N bit sequence for decoding. If symbol Vi has been

coded with Li bits, then Si = L < N.

Symbol V. is used to reconstruct the next intensity by the inverse SSDI1

algorithm. Registers can be used to store the four previously decoded

intensities I. The four SSDI differentials, packed consecutively on the

input tapes, are added in the appropriate sequence to the previously reconstructed

intensities to form the current intensities which then replace the previous

values in the registers. The inverse SSDI reconstruction takes seven addi-

tional operations per set of four intensities. The reconstructed intensities

are placed in a buffer for subsequent writing onto the four reconstructed

MSS tapes.

In preparation for the next decoding operation, Si bits are shifted out

of the input buffer into the N bit register used to address Table D. The

number of shifts Si must be compared to the number of bits left in the input

buffer to determine if the buffer contains at least Si bits. If not, more

data must be read into the buffer from the input tapes before the shifting

occurs.
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The normal algorithm flow, described above, occurs for all intensity

values except for the set of four intensities at the beginning of a new scan

line. A unique Huffman coded prefix is generated by the encoder at the beginning

of each new scan line, and this prefix is followed by 28 bits which are the

first four 7-bit intensity values in the scan line. Detection of this scan

line prefix code by the decoding algorithm loads the following four intensities

into the appropriate I registers, replacing the previous intensities stored

there for the last four intensities in the preceding scan line.

D.3 SUMMARY

The encoding and decoding technique presented forms a practical

and efficient method for the ground-based data compression of multispectral

data with archival fidelity. The simplicity of the SSDI algorithm and the rapid

decoding permitted by a Huffman table look-up, form the basis for an algorithm

which can be rapidly performed.

The determination of the optimum block size N of code words is an

important consideration. As N increases, compression increases, but Table D

doubles in length each time N increases by one. Parameter N should be that

value which allows an average data compression of at least 2:1 while permitting

an array size D that can be accommodated by modest minicomputer systems.

A value of N = 12 is currently being used.

Further simulation and optimization of the reconstruction algorithm will

permit a determination of the minimal set of computations required. A study

of available minicomputers would permit refining the set of machine instructions

used, the number of registers allotted for local storage, and the allowable

storage for Table D. In addition, the time required for reconstruction can

be estimated for several typical computers.
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While this discussion has concentrated on the use of the SSDI algorithm

with Huffman coding based on the statistics of the entire scene, further study

should be performed on the SSDIA algorithm and adaptive Huffman coding for ground

reconstruction. These latter techniques permit an increased compression, but

require a more complex reconstruction algorithm implying a longer reconstruction

time. In addition, the SSDIA requires the storage of an entire scan line in

each spectral band. The compression of four MSS tapes into one compressed

tape provides both economic and archival benefits, assuming the use of efficient

compression techniques applicable to a wide variety of computers. While further

investigation and simulation is required, the proposed technique seems to

represent a viable candidate for the ground compression of MSS digital tapes

with archival fidelity.
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